

Imperfect Compliance

How High Is Program Take-Up?

Even "free" programs involve opportunity costs for participants, so take-up is often low

Intervention	Take-Up	Source
Business training	65%	McKenzie & Woodruff (2013)
Deworming medication	75%	Kremer & Miguel (2007)
Microfinance	13% - 31%	JPAL & IPA (2015)

It is often the case that only people who do a program can be impacted by the program*

- ⇒ We might like to know how much program impacted program participants
- ⇒ Not only relevant in randomized trials (who benefits from free primary education?)

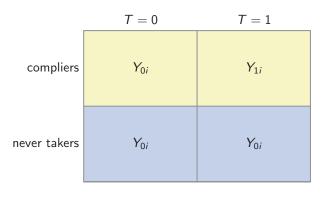
Economics 523 (Professor Jakiela

Treatment-on-the-Treated, Slide

Compliers vs. Never Takers

compliers

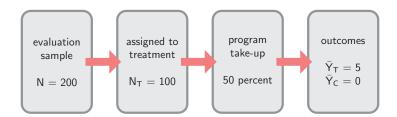
Will do the program if invited


never takers

Will not do the program if invited

Economics 523 (Professor Jakiela)

^{*}Often the case, but not always!


Compliers vs. Never Takers

Economics 523 (Professor Jakiela

Freatment-on-the-Treated, Slide

Imperfect Compliance: A Thought Experiment

Questions:

- What can we say about the average **impact of treatment** on program participants?
- What can we say about the average **outcome** among those who did the program?

Economics 523 (Professor Jakiela)

Imperfect Compliance

Suppose outcomes are impacted by program participation (P_i) , not treatment status (T_i) :

$$Y_i = Y_{0i} + \delta_i P_i$$

- Program take-up is endogenous conditional on treatment: $E[Y_{0i}|P_i=1] \neq E[Y_{0i}|P_i=0]$
- Only those randomly assigned to treatment ($T_i = 1$) are eligible: $E[P_i | T_i = 0] = 0$
- Not everyone participates: $E[P_i|T_i=1]=\lambda<1$

Two possible regressions:

- Regress Y on P using data from the treatment $(T_i = 1)$ group
- Regress Y on T using data from the treatment and comparison groups

Economics 523 (Professor Jakiela

Treatment-on-the-Treated, Slide 7

How Not to Estimate the Impact of Treatment on the Treated

If we estimate the regression equation $Y_i = \alpha + \beta P_i + \varepsilon_i$ using data from the treatment group:

$$\begin{split} \hat{\beta} &= E\left[Y_i|P_i=1\right] - E\left[Y_i|P_i=0\right] \\ &= E\left[Y_{1i}|P_i=1\right] - E\left[Y_{0i}|P_i=0\right] \\ &= E\left[Y_{0i} + \delta_i|P_i=1\right] - E\left[Y_{0i}|P_i=0\right] \\ &= E\left[\delta_i|P_i=1\right] + E\left[Y_{0i}|P_i=1\right] - E\left[Y_{0i}|P_i=0\right] \\ &= \underbrace{E\left[\delta_i|\text{compliers}\right]}_{\text{impact of TOT}} + \underbrace{E\left[Y_{0i}|\text{compliers}\right] - E\left[Y_{0i}|\text{never-takers}\right]}_{\text{selection bias}} \end{split}$$

Economics 523 (Professor Jakiela)

The Intent-to-Treat (ITT) Effect

If we estimate the regression equation $Y_i = \alpha + \beta T_i + \varepsilon_i$:

$$\hat{\beta} = E[Y_i | T_i = 1] - E[Y_i | T_i = 0]$$

 $E[Y_i|T_i=1]$ is a weighted average of outcomes for complier and never-takers:

$$\begin{split} E\left[Y_i|T_i=1\right] &= \lambda E\left[Y_{1i}|T_i=1 \text{ and } P_i=1\right] + (1-\lambda)E\left[Y_{0i}|T_i=1 \text{ and } P_i=0\right] \\ &= \lambda E\left[\delta_i + Y_{0i}|T_i=1 \text{ and } P_i=1\right] + (1-\lambda)E\left[Y_{0i}|T_i=1 \text{ and } P_i=0\right] \\ &= \lambda E\left[\delta_i|\text{compliers}\right] + \lambda E\left[Y_{0i}|\text{compliers}\right] + (1-\lambda)E\left[Y_{0i}|\text{never-takers}\right] \\ &= \lambda E\left[\delta_i|\text{compliers}\right] + E\left[Y_{0i}\right] \end{split}$$

Economics 523 (Professor Jakiela)

Treatment on the Treated Slide

The Intent-to-Treat (ITT) Effect

Substituting this into our expression for $\hat{\beta}$:

$$\hat{\beta} = E[Y_i | T_i = 1] - E[Y_i | T_i = 0]$$

$$= \lambda E[\delta_i | \text{compliers}] + E[Y_{0i}] - E[Y_{0i}]$$

$$= \lambda \underbrace{E[\delta_i | \text{compliers}]}_{\text{impact of TOT}}$$

- \Rightarrow Low compliance ($\lambda < 1$) scales down the estimated treatment effect
- \Rightarrow ITT effect is average across population ($T_i = 1$), including zero impact on never-takers

Economics 523 (Professor Jakiela)

The Impact of Treatment on the Treated

$$\mathsf{ITT} = \lambda \mathsf{TOT} \Leftrightarrow \mathsf{TOT} = \mathsf{ITT}/\lambda$$

The treatment on the treated (TOT) estimator: $\hat{\beta}_{tot} = \frac{E[Y_i|T_i=1]-E[Y_i|T_i=0]}{E[P_i|T_i=1]-E[P_i|T_i=0]}$

- TOT scales up ITT effect to reflect imperfect take-up
- The identifying assumption is that treatment only works through program take-up

Economics 523 (Professor Jakiela)

Treatment-on-the-Treated, Slide 1

Treatment on the Treated: Implementation (Approach #1)

Estimating the impact of treatment on the treated via two separate regressions:

Intent-to-treat (aka reduced form): impact of treatment assignment on outcome of interest

$$Y_i = \alpha_{itt} + \beta_{itt} T_i + \varepsilon_i$$

First stage: impact of assignment to treatment on program participation:

$$P_i = \alpha_{fs} + \beta_{fs} T_i + \epsilon_i$$

Combine OLS coefficients to estimate impact of treatment on the treated: $\beta_{tot} = \beta_{itt}/\beta_{fs}$

Economics 523 (Professor Jakiela)

Treatment on the Treated: Implementation (Approach #2)

Approach #1 is equivalent to using treatment as an instrument for program participation

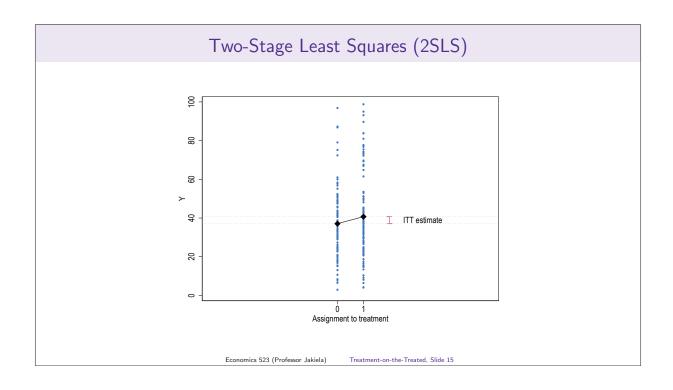
Assumptions required for instrumental variables estimation:

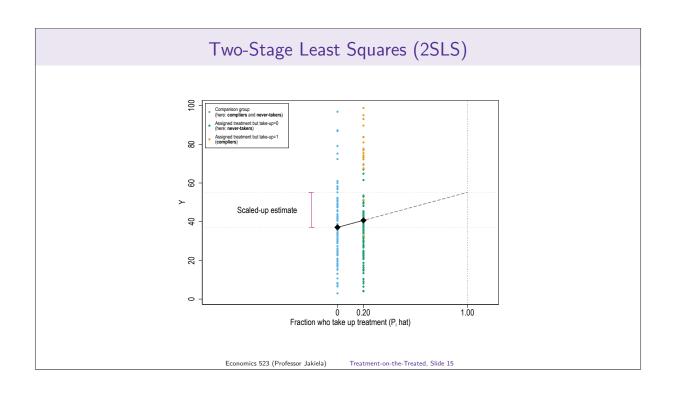
- 1. Instrument is exogenous (i.e. not correlated with error term in first stage)
- 2. Instrument is correlated with treatment (first stage)
- 3. Only impacts outcomes through program participation (exclusion restriction)

Economics 523 (Professor Jakiela)

Treatment-on-the-Treated, Slide 1

Treatment on the Treated: Implementation (Approach #2)


Estimated via two-stage least squares (2SLS):


- First stage: $P_i = \alpha_{fs} + \beta_{fs} T_i + \epsilon_i$
- Second stage: $Y_i = \alpha_{iv} + \beta_{iv}\hat{P}_i + \zeta_i$

Easy to implement using Stata's ivregress 2sls command

Running two (separate) regressions yields incorrect standard error

Economics 523 (Professor Jakiela)

Treatment on the Treated: Implementation (Approach #3)

2SLS is also equivalent to a **control function** approach:

- First stage: $P_i = \alpha_{fs} + \beta_{fs} T_i + \epsilon_i$
- Control function second stage: $Y_i = \alpha_{iv} + \beta_{iv}P_i + \gamma \hat{\epsilon}_i + \zeta_i$

First-stage residual captures the endogenous portion of program participation

- Variation in P_i that remains is the variation explained by T_i
- Second regression equivalent to regressing Y_i on residuals from a regression of P_i on $\hat{\epsilon}_i$

Economics 523 (Professor Jakiela)

Treatment-on-the-Treated, Slide 1

Treatment on the Treated: Summary of Approaches

- 1. Divide ITT effect by first stage (impact of T on P)
- 2. Two-stage least squares (regress Y on predictions from regression of P on T)
- 3. Control function approach (control for residuals from regression of P on T)

Economics 523 (Professor Jakiela)

Treatment on the Treated: Example

Data from a youth entrepreneurship intervention targeting young women in Nairobi, Kenya

- treatment is a dummy for being randomly assigned to the treatment group
- training is a dummy for attending at least one day of business training
- strata is an ID number for randomization strata (neighborhood×month)
- income is a measure of weekly income two years after treatment (from endline survey)

First stage, reduced form regressions take standard form

- First stage: regress training treatment i.strata, r
- Reduced form: regress income treatment i.strata, r

Economics 523 (Professor Jakiela

Treatment-on-the-Treated, Slide 1

TOT Example: First Stage and Reduced Form Results

	(1)	(2)	
	Training	Income	
Treatment	0.6105267	165.9126	
	(0.0260283)	(73.81483)	
	[0.000]	[0.025]	
Strata fixed effects	Yes	Yes	
R-squared	0.470	0.030	
Obs.	680	680	

Robust standard errors in parentheses; p-values in square brackets.

Economics 523 (Professor Jakiela)

TOT Example: Two-Stage Least Squares (2SLS)

```
Stata syntax for 2SLS:
```

```
ivregress 2sls income (training = treatment) i.strata, r
```

Generates same coefficients as two-step process, but difference standard errors

```
regress training treatment i.strata, r
predict phat, xb
regress income phat i.strata, r
```

Economics 523 (Professor Jakiela)

Treatment-on-the-Treated, Slide 2

TOT Example: Two-Stage Least Squares (2SLS)

Instrumental variables 2SLS regression				r of obs =	686	
			Wald chi2(14) =		28.49 0.0122	
			Prob			
				R-squared =		0.0305
				Root	MSE =	950.84
		Robust				
income	Coefficient	std. err.	z	P> z	[95% conf.	interval]
training	271.7533	119.5059	2.27	0.023	37.52603	505.9805
strata						
494002011	243.1708	144.5925	1.68	0.093	-40.22521	526.5668
494004004	-89.89336	109.9156	-0.82	0.413	-305.324	125.5373
494004011	39.53772	151.3919	0.26	0.794	-257.185	336.2604
594004004	52.2759	155.0265	0.34	0.736	-251.5705	356.1222
594004011	-106.3099	130.9806	-0.81	0.417	-363.0272	150.4073
594012004	238.6223	146.6926	1.63	0.104	-48.88987	526.1345
594012011	319.2648	185.929	1.72	0.086	-45.14938	683.6789
694002004	-167.3286	166.5964		0.315	-493.8515	159.1944
694002011	-187.3286	160.601		0.243	-502.1007	127.4436
694004004	-151.1399	194.2218	-0.78	0.436	-531.8076	229.5278
694004011	-260.9	196.4015	-1.33	0.184	-645.8398	124.0398
694012004	209.9024	175.767	1.19	0.232	-134.5947	554.3994
694012011	233.7189	142.9428	1.64	0.102	-46.44377	513.8815
_cons	413.216	77.32459	5.34	0.000	261.6626	564.7694
[nstrumented:	training					
	494002011.str	ata 49400400	04.strata	4940040	11.strata	
	594004004.str	ata 5940040	11.strata	5940120	04.strata	
	594012011.str	ata 69400200	04.strata	6940020	11.strata	
	694004004.str	ata 6940040	11.strata	6940120	04.strata	

Economics 523 (Professor Jakiela)

TOT Example: Two-Stage Least Squares (2SLS)

Economics 523 (Professor Jakiela)

Treatment-on-the-Treated, Slide 2

TOT Example: The Control Function Approach

```
. quietly regress training treatment i.strata, r
. predict presid, resid
. regress income training presid i.strata, \ensuremath{\mathbf{r}}
                                                                                    680
1.98
0.0144
0.0322
Linear regression
                                                        F(15, 664)
Prob > F
R-squared
Root MSE
                                                                                    961.36
                                  Robust
                 Coefficient std. err.
                                                 t P>|t|
      income
                                                                    [95% conf. interval]
                    271.7533 120.8254
                                                       0.025
0.488
    training
                                                                    34.50743
                  -120.5366
                                173.7454
                                                                   -461.6932
                                                                                   220.6199
  494002011
                  243.1708 146.5754
-89.89336 111.6222
                                                                   -44.63639
                                                                                   530.978
                                              1.66 0.098
-0.81 0.421
  494004004
                                                                   -309.0684
                                                                                  129.2816
```

Economics 523 (Professor Jakiela)

TOT Example: Interpretation

The entrepreneurship promotion intervention increases income

- TOT effects are larger than ITT effects (is this always true?)
- Assumption: program has no impact on women who do not participate
 - ▶ When might this be a reasonable assumption?
 - ▶ When might this **not** be a reasonable assumption?
- Which is more policy relevant: the ITT estimates or the TOT estimates?
- Could you estimate the TOT impacts of self-employment? Why or why not?

Economics 523 (Professor Jakiela) Treatment-on-the-Treated, Slide 2

Two-Sided Non-Compliance

Two-Sided Non-Compliance

We sometimes evaluate programs that are available to those in the treatment group

- Examples: medical/health treatment, schooling, vocational/business training, childcare, access to credit, migration, agricultural inputs, management consulting, export contracts
- In such settings, an intervention involves encouraging/facilitating takeup
- · Treatment is random and (one hopes) strongly associated with program participation
 - ► Compliers participate when assigned to treatment, but not when assigned to control
 - ▶ Some people in the treatment group may choose not to participate
 - ▶ Some people in the control group may still participate in the program

Economics 523 (Professor Jakiela

Treatment on the Treated Slide 2

IV Estimates with Two-Sided Non-Compliance

T=0 T=1always takers

compliers

never takers

never takers

IV estimates tell us local average treatment effect (LATE) on compliers

- Monotonicity assumption: there are no defiers
- We can't estimate impacts on **always takers** and **never takers** because being assigned to treatment doesn't change their take-up (i.e. program participation) decision

Economics 523 (Professor Jakiela)

Assumptions Required for IV Estimation of LATE

- 1. Instrument is exogenous (OK in an RCT)
- 2. Instrument is correlated with treatment (first stage)
- 3. Only impacts outcomes through take-up (exclusion restriction)
- 4. Monotonicity (i.e. no defiers)
 - ▶ Treatment either moved people into participation or out of participation, not both
 - ▶ Not required if treatment effects are homogeneous

Economics 523 (Professor Jakiela)

Treatment-on-the-Treated, Slide 2

Characteristics of the Compliers

The impact of treatment on program participation indicates the proportion compliers

$$E[P_i|T_i=1] - E[P_i|T_i=0] = \frac{\text{number of compliers}}{N} = \frac{C}{N}$$

This is also true in sub-populations, e.g. among observations with X=1 for some X

$$E[P_i|T_i=1 \text{ and } X_i=1]-E[P_i|T_i=0 \text{ and } X_i=1]=rac{C_{X=1}}{N_{X=1}}$$

Relative frequency of characteristics X = 1 among compliers, relative to entire population:

$$\frac{E[P_i|T_i=1 \text{ and } X_i=1] - E[P_i|T_i=0 \text{ and } X_i=1]}{E[P_i|T_i=1] - E[P_i|T_i=0]}$$

Economics 523 (Professor Jakiela)