

t=1 $t=2$ $t=3$ $t=4$ $t=5$ $t=6$ $t=7$ $t=8$ ID 10011111ID 20011111ID 300000111ID 400000111ID 500000000ID 600000000	М	ultipl	еT	reatr	nent	and	Com	pariso	on Gi	roups	
t=1 $t=2$ $t=3$ $t=4$ $t=5$ $t=6$ $t=7$ $t=8$ ID 10011111ID 20011111ID 300000111ID 400000111ID 500000000ID 600000000											
t=1 $t=2$ $t=3$ $t=4$ $t=5$ $t=6$ $t=7$ $t=8$ ID 100111111ID 200111111ID 3000001111ID 4000001111ID 5000000000ID 6000000000											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
ID 10011111ID 200111111ID 300000111ID 400001111ID 500000000ID 600000000		t	= 1	t = 2	t = 3	t = 4	t = 5	t = 6	t = 7	<i>t</i> = 8	
ID 20011111ID 30000111ID 40000111ID 500000000ID 600000000	I	ID 1	0	0	1	1	1	1	1	1	
ID 3000011ID 40000111ID 500000000ID 600000000	I	ID 2	0	0	1	1	1	1	1	1	
ID 4 0 0 0 0 1 1 ID 5 0 0 0 0 0 0 0 ID 6 0 0 0 0 0 0 0 0	I	ID 3	0	0	0	0	0	1	1	1	
ID 5 0 0 0 0 0 0 0 0 ID 6 0 0 0 0 0 0 0 0 0	I	ID 4	0	0	0	0	0	1	1	1	
ID 6 0 0 0 0 0 0 0 0 0	I	ID 5	0	0	0	0	0	0	0	0	
	I	ID 6	0	0	0	0	0	0	0	0	
			Econor	nics 523 (Pr	ofessor Jakie	a) Tw	o-Way Fixed	l Effects, Slid	e 12		

Two-Way Fixed Effects β^{DD} as a Weighted Sum

The two-way fixed effects estimator β^{DD} is a weighted sum of 2 × 2 diff-in-diff estimators across all possible pairwise combinations of timing groups (Goodman-Bacon 2021)

- Some use an already-treated group as comparison
 - Creates problems if treatment effect grows/changes over time
 - ► TWFE imposes a model of homogeneous treatment effects
 - ▶ When treatment effects evolve over time, model is mis-specified

We can use Frisch-Waugh-Lovell to construct the TWFE/OLS weights used to generate β^{DD}

• Weights on treated units are not always positive (they are also used as comparison)

Two-Way Fixed Effects as Univariate Regression

Two-way fixed effects is equivalent to univariate regression: $\tilde{Y}_{it} = \alpha + \tilde{D}_{it} + \epsilon_{it}$ where $\tilde{Y}_{it} = Y_{it} - \bar{Y}_t - (\bar{Y}_i - \bar{\bar{Y}})$ and \tilde{D}_{it} defined analogously (just the mean)(just the mean across *i* and *t*)

Two-Way Fixed Effects, Slide 25

Economics 523 (Professor Jakiela)

Two-Way Fixed Effects as Univariate Regression

Two-way fixed effects is equivalent to univariate regression:

$$\tilde{Y}_{it} = \alpha + \tilde{D}_{it} + \epsilon_{it}$$

where \tilde{Y}_{it} = Y_{it} – \bar{Y}_t – (\bar{Y}_i – $\bar{\bar{Y}}$) and \tilde{D}_{it} defined analogously

 \Rightarrow Treatment dummy now effectively continuous measure \tilde{D}_{it}

$$\hat{\beta}^{OLS} = \sum_{it} \tilde{Y}_{it} \underbrace{\left(\frac{\tilde{D}_{it} - \bar{\tilde{D}}_{it}}{\sum_{i} \left(\tilde{D}_{it} - \bar{\tilde{D}}_{it}\right)^{2}}\right)}_{\text{OLS weight}}$$

Two-Way Fixed Effects as Univariate Regression

Two-way fixed effects is equivalent to univariate regression:

 $\tilde{Y}_{it} = \alpha + \tilde{D}_{it} + \epsilon_{it}$

where $ilde{Y}_{it}$ = Y_{it} - $ar{Y}_t$ - $ig(ar{Y}_i - ar{ar{Y}} ig)$ and $ilde{D}_{it}$ defined analogously

 \Rightarrow Treatment dummy now effectively continuous measure \tilde{D}_{it}

$$\hat{\beta}^{OLS} = \sum_{it} \tilde{Y}_{it} \underbrace{\left(\frac{\tilde{D}_{it} - \tilde{\bar{D}}_{it}}{\sum_{i} \left(\tilde{D}_{it} - \tilde{\bar{D}}_{it}\right)^{2}}\right)}_{\text{OLS weight}} \text{ where } \bar{\bar{D}}_{it} = 0$$

- 1. Are treated observations getting negative weight in my TWFE estimation?
 - Are treated observations (i.e. country-years) being weighted in a sensible way?
- 2. Are treatment effects (likely to be) heterogeneous? If yes, how?
 - ► Conceptually: do you expect the treatment effects to vary over time, across units, or both?
 - ▶ Do you see evidence contradicting the assumption of homogeneous treatment effects?
 - Event study specifications
 - Scatter plots of residuals
 - Are your estimated treatment effects robust across specifications?

Event Study Specifications

Negative weights are a major issue if treatment effects change over (relative) time

- Relative time is the number of years since treatment was implemented (in country *t*)
- We can also think of negative relative time as years until treatment starts (in country *t*)

An event study specification allows us to estimate treatment effects for every (relative) time

- Provides direct evidence on the stability of the treatment effect (over timet)
- Also allows us to check for violations of common (pre)trends
- Because we are estimating many parameters instead of one, statistical power is an issue

63

Event Study Specifications

Let G_i indicate the time t when treatment starts in country i

 \Rightarrow R_{it} = t – G_i is relative time, and treatment starts when R_{it} = 0

TWFE event study specification:

$$Primary_{it} = \alpha_i + \gamma_t + \sum_{r < 2} \beta_r \mathbb{1}[R_{it} = r] + \sum_{r > 0} \delta_r \mathbb{1}[R_{it} = r] + \varepsilon_{it}$$

Impacts are defined relative to $R_{it}=-1$, the last period before treatment

TWFE: Checklist

- Check for negative weights, and consider eliminating them
 - ▶ The most important thing is to know what you are estimating
- Assess the linearity of the residuals: is homogeneity a reasonable assumption?
- Implement an event study design, if feasible given sample/power
- Robustness checks, more robustness checks, and even more robustness checks