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Dummy Variables



OLS Regression on a Binary Independent Variable

Y = α + βD
0

1
2

3
4

5
6

D
ep

en
de

nt
 V

ar
ia

bl
e

 

0 1
 

Treatment Status

control treatment

D = 0 D = 1

α̂ α̂ + β̂

α̂ = ȲC (control group mean)

β̂ = ȲT − ȲC (difference in means)
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OLS Regression on a Binary Independent Variable

You may or may not remember that in a bivariate regression:

β̂OLS = COV (X ,Y )
VAR(X )

=
∑

i(Xi−X̄)(Yi−Ȳ)∑
i(Xi−X̄)2

Notice that the numerator can be re-organized:∑
i

(
Xi − X̄

) (
Yi − Ȳ

)
=

∑
i XiYi −

∑
i X̄Yi
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OLS Regression on a Binary Independent Variable

You may or may not remember that in a bivariate regression:

β̂OLS = COV (X ,Y )
VAR(X )

=
∑

i(Xi−X̄)(Yi−Ȳ)∑
i(Xi−X̄)2

Notice that the numerator can be re-organized:∑
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) (
Yi − Ȳ
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∑
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(
Xi − X̄
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OLS Regression on a Binary Independent Variable

You may or may not remember that in a bivariate regression:

β̂OLS = COV (X ,Y )
VAR(X )

=
∑

i [Yi(Xi−X̄)]∑
i(Xi−X̄)2

When independent variable is binary:

X̄ = nT
N

(nT is # of treated observations)
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OLS Regression on a Binary Independent Variable

You may or may not remember that in a bivariate regression:

β̂OLS = COV (X ,Y )
VAR(X )

=
∑

i [Yi(Xi−X̄)]∑
i(Xi−X̄)2

When independent variable is binary:

X̄ = nT
N

(nT is # of treated observations)

Assume observations are ordered:{
Y1,Y2, . . . ,YnT−1 ,YnT

treatment group

,YnT+1 ,YnT+2 , . . . ,YN

control group

}

Xi = 1

⇒ Xi − X̄ = 1− X̄

Xi = 0

⇒ Xi − X̄ = −X̄
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OLS Regression on a Binary Independent Variable

You may or may not remember that in a bivariate regression:

β̂OLS = COV (X ,Y )
VAR(X )

=
∑

i [Yi(Xi−X̄)]∑
i(Xi−X̄)2

=
∑

i [Yi(Xi−X̄)]
NX̄(1−X̄)

Re-write denominator:∑
i

(
Xi − X̄

)2
=

∑nT
i=1

(
1− X̄

)2
+
∑N

i=nT+1

(
−X̄
)2

= nT
(
1− X̄

)2
+ (N − nT )

(
−X̄
)2

= . . . = nT − nT X̄ = NX̄
(
1− X̄

)
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OLS Regression on a Binary Independent Variable

You may or may not remember that in a bivariate regression:

β̂OLS = COV (X ,Y )
VAR(X )

=
∑

i [Yi(Xi−X̄)]∑
i(Xi−X̄)2

=
∑

i [Yi(Xi−X̄)]
NX̄(1−X̄)

∑
i

[
Yi

(
Xi − X̄

)]

“linear combination of Y s”
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OLS Regression on a Binary Independent Variable

You may or may not remember that in a bivariate regression:

β̂OLS = COV (X ,Y )
VAR(X )

=
∑

i [Yi(Xi−X̄)]∑
i(Xi−X̄)2

=
∑

i [Yi(Xi−X̄)]
NX̄(1−X̄)

∑
i

[
Yi

(
Xi − X̄

)]
=
∑nT

i=1

[
Yi

(
1− X̄

)]
+
∑N

i=nT+1

[
Yi

(
−X̄
)]

=
∑nT

i=1 Yi −
∑N

i=1

[
Yi

(
X̄
)]

= nT ȲT − X̄
(
NȲ

)
= NX̄ȲT − NX̄

[
X̄ ȲT +

(
1− X̄

)
ȲC

]
= NX̄

(
1− X̄

) (
ȲT − ȲC

)
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ȲC
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OLS Regression on a Binary Independent Variable

You may or may not remember that in a bivariate regression:

β̂OLS = COV (X ,Y )
VAR(X )

=
∑

i [Yi(Xi−X̄)]∑
i(Xi−X̄)2

=
∑

i [Yi(Xi−X̄)]
NX̄(1−X̄)

=
NX̄(1−X̄)(ȲT−ȲC )

NX̄(1−X̄)

= ȲT − ȲC
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OLS Regression on a Binary Independent Variable

When we regress Yi on (only) a dummy variable:

=β̂OLS ȲT − ȲC

• Estimated constant α̂OLS is control group mean, also Ŷi

• Predicted Ŷi for treated individuals/units is α̂OLS + β̂OLS
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OLS Regression on Mutually Exclusive Dummy Variables

Y = α + β1T1 + β2T2 + β3T3

control treatment 1 treatment 2 treatment 3

T1 = T2 = T3 = 0
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OLS Regression on Mutually Exclusive Dummy Variables

Y = α + β1T1 + β2T2 + β3T3

control treatment 1 treatment 2 treatment 3

T1 = T2 = T3 = 0 T1 = 1 T2 = 1 T3 = 1

α̂ α̂ + β̂1 α̂ + β̂2 α̂ + β̂3

α̂ = ȲC (control group mean)

β̂i = ȲTi − ȲC (difference in means between treatment i and control)

Economics 523 (Professor Jakiela) Regression, Slide 36



Pooling Treatments

• If we pool treatments to estimate an average effect across treatment arms:

I Estimated coefficient (and treatment effect) βpooled is average of impacts across treatments

I Average depends on nTi values: share of treated observations in each treatment arm

I Also depends on treatment effect of each arm (pooling arms with no impact will matter)

• Estimates of pooled effect more precise because sample size is larger

I When is pooled effect policy relevant?

Economics 523 (Professor Jakiela) Regression, Slide 37



Cross-Cutting Designs

• We often want to estimate the impact of treatments that may work best together

I Access to credit and vocational training for unemployed youth

I Nutrition supplements and parenting education for at-risk babies and children

I Increased enforcement and information campaigns or behavioral nudges for tax compliance

I Teacher training and additional materials for under-performing schools

I Management consulting and subsidies for exporting firms

• Cross-cutting designs allow us to estimate impacts of each treatment in isolation as well as
the pooled impact, to see whether any program effects are additively separable
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Cross-Cutting Designs

control

treatment 1

control treatment 2

C

T1

T2

T1×T2
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Cross-Cutting Designs and Interaction Terms

Y = α + β1T1 + β2T2 + β3(T1 × T2)

C

T1

T2

T1×T2
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Challenge Problem: Triple Interactions

Y = α + β1T1 + β2T2 + β3T3 + γ1T1×T2 + γ2T2×T3 + γ3T1×T3 + θT1×T2×T3
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Continuous Variables



When Is Treatment a Continuous Variable?

• Sometimes we vary treatment intensity across treatment arms

I Subsidies for malaria treatment (Cohen, Dupas, and Schaner 2015)

I Varying the size of grants to entrepreneurs/firms, schools, etc.

I Proportion treated within clusters (CCTs, job training, etc.)

• Binary treatments might also impact units differently, based on pre-existing conditions

I Law banning traditional birth attendants in Malawi (Godlonton and Okeke 2016)

I Impact of eliminating primary school fees on completion (cf. Lucas and Mbiti 2012)

• Should we dichotomize treatment variable or exploit continuous variation in intensity?
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Continuous Variation in Treatment

comparison treatment
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Independent variable

Yi = Xi + ε

(1)
OLS

Treatment Intensity 0.994∗∗∗

(0.016)
Constant 0.005

(0.009)

Standard errors in parentheses.
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Continuous Variation in Treatment

comparison treatment
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Independent variable

Yi = Xi + ε

(1)
OLS

Treatment Dummy 0.509∗∗∗

(0.016)
Constant 0.242∗∗∗

(0.011)

Standard errors in parentheses.
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Dichotomous vs. Continuous Treatment Variables

• When the true dose-response relationship is linear:

I OLS w/ a continuous treatment variable is correctly specified

I Uses observed variation increase statistical power (odds of finding an effect)

• The estimand is different when we dichotomize treatment

I OLS coefficient captures impact of moving from average level of treatment intensity
in the control group to average level of treatment intensity in the treatment group

I Not the same as impact of moving from treatment intensity 0 to treatment intensity 1

• When true dose-response relationship is linear, OLS with continuous X is better
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OLS when the Dose-Response Relationship Is Not Linear
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Independent variable

(1)
OLS

Treatment Intensity 0.281∗∗∗

(0.029)
Constant 0.810∗∗∗

(0.017)

Standard errors in parentheses.
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OLS when the Dose-Response Relationship Is Not Linear
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Independent variable

(1)
OLS

Treatment Intensity 3.614∗∗∗

(0.257)
Constant 0.372∗∗∗

(0.034)

Standard errors in parentheses.
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OLS when the Dose-Response Relationship Is Not Linear
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Independent variable

(1)
OLS

Treatment Intensity 1.032∗∗∗

(0.092)
Constant 0.650∗∗∗

(0.026)

Standard errors in parentheses.
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Continuous Variation in Treatment Intensity

• When the true relationship (i.e. conditional expectation function) is not linear:

I OLS w/ a continuous treatment variable is incorrectly specified (may or may not matter)

I Estimated treatment effect (i.e. coefficient) depends on choice of sample (values of X )

• Graph your data (though often true relationship obscured by noise)

I Choose to dichotomize (and where to dichotomize)

I Vary your sample to assess the robustness of your estimates

• Be skeptical of results when treatment assignment process is unclear (observational data!)
and you cannot observe the relevant empirical relationships in your data graphically
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Fixed Effects



What Are Fixed Effects?

• Individual dummy variables for mutually exclusive groups in your data

I Dummy for male or female

I Age, age group, or year of birth fixed effects

I Continent/country/state/district/geography fixed effects

I Year/month/time fixed effects

• Why use fixed effects?

I Estimation using within rather than between variation

• We often use multiple sets of fixed effects in empirical work
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Simpson’s Paradox

βOLS = -0.69
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What Do Fixed Effects Do?

βOLS = 1.78
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Treatment variable

Equivalent regressions:

• Y = α + θX + βOrange + γPink

• Ỹ = α + θX̃

where:

• Ỹ = Y − Ȳwithin

• X̃ = X − X̄within
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What Do Fixed Effects Do?

• OLS with fixed effects is equivalent to:

I Transforming independent and dependent variables by subtracting off the within-group mean

I Running OLS in your transformed (i.e. re-centered, normalized, de-meaned) data

• Fixed effects changed the coefficient estimate because treatment (X ) varied across groups

I When X doesn’t vary, FEs can improve precision but won’t change slope estimate

I When randomized/exogenous treatment probability/intensity varies across groups, you must
include fixed effects or control directly for probability of treatment (the propensity score)

• If you regress X and Y on only the fixed effects, residuals are the normalized variables

I Remember: predicted values of Y are the within-group means
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Binary Treatment, Homogeneous Treatment Effects: Example

• Consider the following setup:

I N = 300

I Three groups: N1 = N2 = N3 = 100

I Treatment probability: 25, 50, 75 percent in Groups 1, 2, and 3, respectively

I Data-generating process: Yi = Gi + Di + εi

• In this setting?

I What is the (real) treatment effect?

I What is the mean in the control group?

I What is the mean in the treatment group?
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Binary Treatment, Homogeneous Treatment Effects: Example

βOLS = 1.70
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• OLS coefficient is ȲT − ȲT

• Biased estimate of ATE because:

◦ T̄ varies across groups

◦ Ȳ varies across groups
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Binary Treatment, Homogeneous Treatment Effects: Example

βOLS = 1.70
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βOLS = 1.03
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Binary Treatment, Homogeneous Treatment Effects: Example

βOLS = 1.03
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With Fixed Effects

Group 1 (orange): T̄orange = 0.25

• Treated observations weighted heavily

• Contribute (relatively) more to ȲT ,G=1

Group 2 (blue): T̄orange = 0.5

• Treated, untreated weighted equally

Group 3 (pink): T̄orange = 0.75

• Untreated observations weighted heavily

Coefficient on treatment is a linear combination of the within-group treatment effects, ȲT ,G − ȲC ,G
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Fixed Effects with Binary Treatment

• Group-level estimates of treatment effect are not weighted equally

1. Weights are proportional to NGpG (1 − pG )

2. Weights are normalized by the sum of all country-specific weights

3. Countries with treatment probability close to one half receive more weight

• Individual observations are also not weighted equally (conditional on NGpG (1 − pG ))

1. Treated units in countries with few treated units get more weight

2. Untreated units in countries with few treated units get less weight

3. Treated units in countries with many treated units get less weight

4. Untreated units in countries with many treated units get more weight

• OLS coefficient captures ATE across entire sample, not across treated observations
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The Frisch-Waugh-Lovell Theorem

Y = α + βX + γZ

is equivalent to

Ỹ = α + βX̃

where

Ỹ = residuals from regressing Y on Z

X̃ = residuals from regressing X on Z
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The Frisch-Waugh-Lovell Theorem

Y = α + βX + γ1Z1 + . . . γKZK

is equivalent to

Ỹ = α + βX̃

where

Ỹ = residuals from regressing Y on Z1, . . . ,ZK

X̃ = residuals from regressing X on Z1, . . . ,ZK
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Frisch-Waugh-Lovell Example: The Impact of Education

• These approaches generate identical estimates of βeduc , the estimated impact of education:

1. Regress income on education, age dummies, and a dummy for being female

2. Transform income and education by subtracting off age-specific means, then transform the
transformed variables by subtracting off gender-specific means (of transformed variables),
then regress transformed income on transformed education

3. Generate residualized income and education by regressing those variables on the age and
gender FEs, then regress residualized income on residualized education (without controls)

4. Residualize income and education on age dummies first, then gender dummies, then regress
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Frisch-Waugh-Lovell: Why It Matters

• When treatment is binary and plausibly exogenous, the difference in outcome means
between the treatment and comparison groups provides an unbiased estimate of impact

I All treated observations get equal positive weight, all untreated get equal negative weight

• With controls that are correlated with treatment, treatment is (in effect) no longer binary

I Untreated observations with covariates that predict a high likelihood of treatment get very
low negative weights in linear regression; while treated observations with covariates that
predict a low likelihood treatment get very high positive weights in multivariate regression

I Everything is still fine if treatment effects are homogeneous: treatment effect is the same for
everyone, so it doesn’t matter what weights we use to calculate average treatment effect

I If effects vary with covariates that predict treatment, mis-specification problems can arise

• What to do: show results with and without covariates, residualize and then plot your data
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Empirical Exercise



The Graduation Approach
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The Graduation Approach: Targeting the Ultra-Poor
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The Graduation Approach: Impacts on Food Security
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Empirical Exercise: Takeaways

1. How does the estimate of the treatment effect vary across countries?

2. How are these country-level estimates weighted in fixed effects estimation?

3. When are fixed effects necessary? When are they useful?

4. Which country-level estimates get more/less weight with fixed effects?
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