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Basic Regression Equation: Yi = α + βDi + εi
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RCT Regression Specification with Controls

More typical regression specification:

Y1,i = α+ βDi + δX0,i + γY0,i + κstrata + εi

We typically include these controls:

• Dummies for randomization strata (κstrata)

• Selected baseline covariates that are not balanced across treatments∗

• Baseline covariates that predict the outcome

▶ Baseline values of outcome variables are (sometimes) most important (ANCOVA)

We do not want to include:

• Controls that could be impacted by treatment (“bad controls” problem)
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“You Don’t Have to Take My Word For It”
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“You Don’t Have to Take My Word For It”
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We Want to Include Controls that Predict Ti or Yi

Controls should be orthogonal to treatment status (because we randomized):

• In practice, a control might be correlated with treatment

▶ In small(ish) samples, we may see some differences in observables/covariates between
treatment and comparison groups (especially as the number of covariates increases)

• Can be important to show estimated impacts are “robust” to inclusion of covariates

• Adding in one imbalanced covariate can undo randomization
(remember, we are now regressing residual of Y on residual of D)

▶ This is (one of the reasons) why stratification is desirable

Baseline covariates are orthogonal to treatment, so they should not impact coefficient

• Controls help if they explain residual variation in Y
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We Want to Include Controls that Predict Ti or Yi

=MDE
(
t1−κ + tα/2

) √
1

P(1−P)

√
σ̃2

N

√
1 + (ng − 1) ρ̃
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Best Subset Selection

A best subset selection algorithm:

• For each k = 1, 2, . . . , p

▶ Fit all models containing exactly k covariates

▶ Identify the “best” in terms of R2

• Given a frontier of best subsets (conditional on k), need to choose optimal k

▶ Need to address the fact that R2 always increases with k

▶ Multiple approaches: adjusted R2, cross-validation, etc.

When p is large, best subset selection is not feasible (too many combinations of variables)

• Forward and backward subset selection may work poorly when covariates are correlated

Economics 523 (Professor Jakiela) Machine Learning, Slide 10



Best Subset Selection

In OLS, we seek to minimize:

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

Best subset selection can be expressed as: choose β to minimize

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

subject to

p∑
j=1

I (βj ̸= 0) ≤ s

where s is the number of regressors/covariates/predictors/features included in the model

⇒ But we solve it algorithmically, not analytically

⇒ When p is large, finding the best subset is hard
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What Is Machine Learning?

A set of extensions to the standard econometric/statistical toolkit aimed at improving
predictive accuracy, particularly when data sets are sparse (many variables, most are garbage)

• Like subset selection, lasso is an extension of OLS, useful for covariate selection

• Other ML methods are increasingly being used by economists to capture treatment effect
heterogeneity, to identify latent groupings in data (e.g. competitors), and to analyze text

Machine learning introduces new tools, relabels existing tools

• Main focus is on predicting Y , not testing hypotheses about causal impact of T

⇒ ML “results” about β may not be robust or causally identified

• Vocabulary: test vs. training data/sample/examples, features, train a model
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Shrinkage Operators: Machine Learning Extensions to OLS

Machine learning shrinkage operators (ridge regression, lasso) extend OLS to better predict Y

• Basic idea is to fully “kitchen sink” our regressions while proactively correcting for
potential over-fitting, allowing us to leverage information from more covariates effectively

Lasso is attractive because it identifies a subset of X s that are most effective predictors of Y
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Can We Improve on OLS?

A standard linear model may not be the best way to predict Y :

Y = β0 + β1X1 + . . .+ βpXp + ε

Can we improve on OLS?

• When p is large relative to N, OLS is prone to over-fitting

• OLS explains both structural and spurious relationships in data

Like best subset selection, shrinkage operators minimize RSS subject to an additional constraint

minβ

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

subject to f (β) ≤ s
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Shrinkage Operators: Ridge Regression

Ridge regression solves a closely related minimization problem:

minβ

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

subject to

p∑
j=1

β2
j ≤ s

or, equivalently,

minβ

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

β2
j

for some tuning parameter λ ≥ 0

Ridge regression shrinks OLS coefficients toward zero

• Shrinkage is more or less proportional, so ridge regression does not identify a subset of
regressors to include in the regression model (it just down-weights some relative to others)
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OLS is BLUE, But Ridge Regression (Sometimes) Has Lower MSE
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Source: James et al. (2021)

Gauss-Markov Theorem: OLS is the best linear unbiased estimator (BLUE) of Y

• Ridge regression is biased (black line), but has lower variance relative to the true
underlying β (green line) and can therefore achieve lower MSE (pink line) for some λs
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Shrinkage Operators: Lasso

Lasso (Least Absolute Shrinkage and Selection Operator) seeks to minimize:

minβ

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

|βj |

for some tuning parameter λ ≥ 0

Lasso combines benefits of subset selection, ridge regression

• Less computationally intensive than subset selection

• Sets some coefficients to 0 → identifies parsimonious model
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Lasso Sets Some Coefficients to Zero

Source: James et al. (2021)

The lasso constraint region has sharp corners ⇒ some coefficients set to 0
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Three Approaches to Choosing λ (1/3)

Source: Witten et al. (2023)

k-fold cross-validation (default with Stata’s lasso command):

• Randomly sort observations in k groups

• For each group k , estimate lasso on on rest of sample and predict MSE using observations
in k (the hold-out sample); average to get MSE(λ)

• Iterate over λ values to choose λ that minimizes MSE

Economics 523 (Professor Jakiela) Machine Learning, Slide 20



Three Approaches to Choosing λ (2/3)

Bayesian Information Criterion (BIC): function of n, RSS, number of parameters in the model

BIC =
1

n

(
RSS + log(n)d σ̂2

)
where d is the number of covariates and σ̂2 is an unbiased estimate of the variance

• One of several examples of approaches based on (essentially) adjusted R2

• bic is the only one of these options available from Stata’s lasso command
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Three Approaches to Choosing λ (3/3)

Belloni et al. (2012, 2013, 2014), etc.: alternative approach to choosing λ

• Chooses λ iteratively based on data, penalty can vary across covariates

• Errs on the side of choosing fewer controls to avoid over-fitting

• Allows for heteroskedasticity

Three approaches may generate very different sets of controls

• Costs of too many/too few may vary across empirical contexts
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Lasso in Simulated Data: N = 1000, K = 5
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data-generating process: Y =
∑5

k=1 Xk + ε where Xk ∼ N(0, 1) for k = 1, . . . , 5, ε ∼ N(0, 1), N = 1000, K = 5
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Lasso in Simulated Data: N = 1000, K = 100
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data-generating process: Y =
∑5

k=1 Xk + ε where Xk ∼ N(0, 1) for k = 1, . . . , 100, ε ∼ N(0, 1), N = 1000, K = 100
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Lasso in Simulated Data: N = 200, K = 100
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data-generating process: Y =
∑5

k=1 Xk + ε where Xk ∼ N(0, 1) for k = 1, . . . , 100, ε ∼ N(0, 1), N = 200, K = 100
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Lasso in Simulated Data: N = 120, K = 100
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data-generating process: Y =
∑5

k=1 Xk + ε where Xk ∼ N(0, 1) for k = 1, . . . , 100, ε ∼ N(0, 1), N = 120, K = 100
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Using Lasso to Choose Covariates in an RCT

Conceptually, we want to control for covariates that:

• Predict the outcome conditional on treatment (to increase power/precision)

• Predict treatment (i.e. are slightly imbalanced by chance, which only matters ex post)

Over-fitting, noisy controls can make our treatment effect estimates less precise

• Collecting a larger number of covariates also costs more (implying a lower sample size?)
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Post-Double-Selection (PDS) Lasso

Norm is to use post-double-selection (PDS) lasso to select covariates expost:

• Use lasso to identify baseline covariates that predict treatment

• Use lasso to identify baseline covariates that predict Y (not controlling for T )

• Include all of the above in regression estimates of treatment effects

▶ Also include amelioration set including strata fixed effects, baseline Y , etc.

Including predictors of T matters a lot when treatment is not randomly assigned, less in RCTs

• Addresses any concerns about imbalance across treatment, control groups

PDS lasso allows for standard inference procedures
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PDS Lasso: Malaria Data Example

Variable Description

act any RCT arm: assigned ACT any subsidized price (less than 500 KSh)

c act Episode care: Treated with ACT

b h edu Baseline: years of education of household head

b knowledge Baseline: Knows only mosquitoes transmit malaria

b hh size Baseline: Number of household members

b acres Baseline: Acres of land owned by household head

b dist km Baseline: Distance (km) from household to study chemist

b h age imputed Baseline: Age of head (missing replaced by sample mean)

b h age missing Baseline: Age of head missing
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Preparing the Data

Variable Obs. Mean SD Min. Max.

act any 575 0.7391304 0.4394912 0 1

c act 575 0.3408696 0.4744143 0 1

b h edu 572 5.300699 3.940068 0 16

b knowledge 575 0.5391304 0.4989005 0 1

b hh size 575 5.466087 2.48658 1 14

b acres 462 2.270779 2.697221 0 34

b dist km 574 1.667154 .9307161 .0332327 3.982576

b h age imputed 575 39.2537 15.3422 17 88

b h age missing 575 0.0504348 0.2190309 0 1
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Using Stata’s lasso Command: Data-Driven Penalty

lasso linear act any b * miss *, selection(plugin)

...

display "‘e(othervars sel)’"

b h edu b h age imputed b h age missing

lasso linear act any b *, selection(plugin)

display "‘e(othervars sel)’"

miss b dist km
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Using Stata’s lasso Command: Data-Driven Penalty

lasso linear act any b * miss *, selection(plugin)

...

display "‘e(othervars sel)’"

b h edu b h age imputed b h age missing

lasso linear act any b *, selection(plugin)

display "‘e(othervars sel)’"

miss b dist km (will often be “no covariates selected”)
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Using Stata’s lasso Command: CV-Selected Penalty

lasso linear act any b * miss *, selection(cv)

...

display "‘e(othervars sel)’"

b h edu b knowledge b hh size b acres b dist km b h age imputed ...

...b h age missing miss b h edu miss b acres

lasso linear act any b *, selection(cv)

display "‘e(othervars sel)’"

b acres miss b acres
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Using Stata’s lasso Command: Results

OLS PDS:DD PDS:CV

(1) (2) (3)

Treatment 0.190 0.186 0.190

(0.040) (0.039) (0.040)

[4.72] [4.71] [4.75]

Covariates that predict T No Yes Yes

Covariates that predict Y No Yes Yes

Covariates included 0 4 9

Residual variance 0.2181 0.2071 0.2071

Standard errors in parentheses; t-statistics in brackets.
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When Are Covariates Important?

=MDE
(
t1−κ + tα/2

) √
1

P(1−P)

√
σ̃2

N

√
1 + (ng − 1) ρ̃

Covariates can increase statistical power substantially when outcomes are serially correlated

• Covariates have limited impact when outcomes vary a lot over time

• Malaria example: residual variance 93 percent of original

• Including more covariates can increase power, but risks over-fitting
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