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Potential Outcomes



Do Hospitals Make People Healthier?

Your health status is: excellent, very good, good, fair, or poor?

Hospital No Hospital Difference

Health status 3.21 3.93 −0.72∗∗∗

(0.014) (0.003)

Observations 7,774 90,049

source: 2005 National Health Interview Survey (Angrist & Pischke 2009)

A comparison of means suggests hospitals make people worse off: those with a hospital stay
in last 6 months are, on average, less healthy than those that were not admitted to the hospital

• What’s wrong with this picture?
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The Causal Impact of Treatment

We are interested in the relationship between some “treatment” (e.g. going to the hospital)
and some outcome that may be impacted by the treatment (eg. self-assessed health status)

Each individual is either treated or not:

• Di = is a treatment dummy equal to 1 if i is treated and 0 otherwise

Outcome of interest:

• Y = outcome we are interested in studying (e.g. health)

• Yi = value of outcome of interest for individual i
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Potential Outcomes

For each individual, there are two potential outcomes:

• Y0,i = i ’s outcome if she doesn’t receive treatment

• Y1,i = i ’s outcome if she does receive treatment

The causal impact of treatment on individual i is: Y1,i − Y0,i

• How much does treatment change outcome of interest for i?

• We are interested in average treatment effect – average of Y1,i − Y0,i across people
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Potential Outcomes: Example

Alejandro has a broken leg.

• Y0,a = If he doesn’t go to the hospital, his leg won’t heal properly

• Y1,a = If he goes to the hospital, his leg heals completely

Benicio doesn’t have any broken bones. His health is fine.

• Y0,b = If he doesn’t go to the hospital, his health is still fine

• Y1,b = If he goes to the hospital, his health is still fine
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Potential Outcomes: Example

Yes Hospital No Hospital

Alejandro Y1,a Y0,a

Benicio Y1,b Y0,b
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The Fundamental Problem of Causal Inference

The fundamental problem of causal inference:

We never observe both potential outcomes for the same individual

⇒ Creates a missing data problem whenever we try to compare treated to untreated

For any individual, we can only observe one potential outcome:

Yi =

{
Y0,i if Di = 0

Y1,i if Di = 1

Potential outcomes without treatment (i.e. values of Y0,i ) may differ between those who choose
to take-up treatment (Alejandro with a broken leg) and those who do not (healthy Benicio)
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Selection Bias: Example
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Selection Bias: Example
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Selection Bias: Example

Alice

Betty

Carol

Diana

Y1,i

6

7

Y0,i

1

2

Alice and Betty take up treatment
Alice

Betty

6

7 ⇒ Ȳtreatment = 6.5

Carol and Diana do not participate
Carol

Diana

1

2 ⇒ Ȳcomparison = 1.5

Ȳtreatment − Ȳcomparison = 6.5− 1.5 = 5

Economics 523 (Professor Jakiela) Selection Bias, Slide 21



Selection Bias

Comparing the mean outcome among program participants to the mean outcome among those
who don’t choose to participate doesn’t normally provide an unbiased estimate of causal impact

• Treated, untreated likely different in absence of program

• Difference in potential outcomes without treatment leads to selection bias

• The difference in outcome means, ȲT − ȲC , is a biased estimator of program impacts

• ȲT − ȲC could be biased up or down, relative to true average causal effect of treatment

• Bias does not disappear in large samples, even large numbers of controls may not help
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Notation: Mathematical Expectations

The expected value or mathematical expectation of Yi , E [Yi ]:

• Equivalent to population mean or sample average in an infinite population

I Example: probability coin flipped lands heads

I Equivalent to fraction heads after a (very) large number of flips

Law of Large Numbers:

• In small samples, realized average of Yi might be far from the true mean of Yi

• Average of Yi gets very close to E [Yi ] as number of observations gets large
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Notation: Conditional Expectations

Conditional expectation:

E [Yi |Xi = x ]

Conditional expectation of Yi given Xi = x is average of Yi in infinite population where Xi = x

Example:
Let Yi be height, and let Xi ∈ {0, 1} be an “economics professor dummy”

• E [Yi |Xi = 1] is the average height among (infinitely many) economics professors

• E [Yi |Xi = 0] is the population mean of height among everybody else
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Notation: Average Treatment Effect (ATE)

The quantity of interest is the average treatment effect (ATE), or average causal effect,
or conditional average treatment effect, or average impact, or treatment effect. . .

E [Y1,i − Y0,i |Di = 1] = E [Y1,i |Di = 1]− E [Y0,i |Di = 1]

• ATE is average difference in potential outcomes (usually) across treated population

• Fundamental problem of causal inference: we never observe Y0,i for treatment group

I ȲT is an unbiased estimator of E [Yi |Di = 1] = E [Y1,i |Di = 1]

I We need an unbiased estimator of E [Y0,i |Di = 1]
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Notation: Selection Bias

When we compare (many) participants to (many) non-participants:

E [ȲT − ȲC ] = E [Yi |Di = 1]− E [Yi |Di = 0]

= E [Y1,i |Di = 1]− E [Y0,i |Di = 0]

Adding in −E [Y0,i |Di = 1] + E [Y0,i |Di = 1]︸ ︷︷ ︸
=0

, we get:

Difference in group means

= E [Y1,i |Di = 1]− E [Y0,i |Di = 1]︸ ︷︷ ︸
average causal effect on participants

+E [Y0,i |Di = 1]− E [Y0,i |Di = 0]︸ ︷︷ ︸
selection bias
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Summary

We would like to calculate average treatment effect by comparing potential outcomes for i
both with and without treatment, but for each i we can only observe one potential outcome

vs.

In the real world, we either observe Lisa Simpson with a textbook or without a textbook

• Can’t observe the counterfactual (i.e. the other potential outcome)

• We need to find a comparison group to approximate Lisa’s outcome without a textbook
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Summary

To estimate causal impacts on the set of people who choose to take up treatment, we must
identify a comparison group that is similar to the treatment group in the absence of treatment

vs.

This is hard – typically impossible in observational data

• An identification strategy is a research design specifying treatment, comparison groups

• A good identification strategy: variation in treatment status that is good-as-random
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The Experimental Ideal



Random Assignment Eliminates Selection Bias

Experimental approach:

• Random assignment to treatment: eligibility for program is determined at random,
e.g. via pulling names out of a hat, or using a computer pseudo-random number generator

When treatment status is randomly assigned,
treatment, control groups are random samples of a single population
(e.g. the population of all eligible applicants for the program)

⇒ E [Y0,i |Di = 1] = E [Y0,i |Di = 0] = E [Y0,i ]

Expected outcomes are equal in the absence of the program
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Random Assignment Eliminates Selection Bias

ȲT − ȲC provides an unbiased estimate of the (casual) average treatment effect (or ATE):

= E [Yi |Di = 1]− E [Yi |Di = 0]

= E [Y1,i |Di = 1]− E [Y0,i |Di = 0]

= E [Y1,i |Di = 1]− E [Y0,i |Di = 1] + E [Y0,i |Di = 1]− E [Y0,i |Di = 0]

= E [Y1,i |Di = 1]− E [Y0,i |Di = 1]︸ ︷︷ ︸
average treatment effect on participants

+E [Y0,i ]− E [Y0,i ]︸ ︷︷ ︸
=0

= E [Y1,i ]− E [Y0,i ]︸ ︷︷ ︸
ATE
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Random Assignment Eliminates Selection Bias: Assumptions

Excellent news: random assignment eliminates selection bias∗

∗Some restrictions apply

Random assignment is not (quite) magic:

• Relies on Law of Large Numbers, which only makes sense for large(ish) samples

• Stable Unit Treatment Value Assumption (SUTVA): individual outcomes depend on one’s
own treatment status, but not on anyone else’s treatment status (i.e. no spillovers)
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Sample Size Matters: Example

Example: imagine that I want to evaluate the impact of fancy new software Stata 138,
so I randomly choose which of my two research assistants (below) should receive a copy

They’re different! Omitted variables likely to matter – by chance – in small samples

“Randomization works not by eliminating individual difference but rather by ensuring that
the mix of individuals being compared is the same. Think of this as comparing barrels

that include equal proportions of apples and oranges.”

– Angrist and Pischke (2009)
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The Law of Large Numbers in Practice

The probability a fair coin lands “heads” is 0.5, but the observed average proportion heads
after a single coin flip is either 0 or 1
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The Law of Large Numbers in Practice
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Law of Large Numbers: sample average can be brought as close as we like to population
mean (i.e. probability that average is far from population mean can be made as low as we like)
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The Law of Large Numbers in Practice
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Stable Unit Treatment Value Assumption (SUTVA)

The Stable Unit Treatment Value Assumption (SUTVA):

• Imbens and Rubin (2015):
“potential outcomes for any unit do not vary with the treatments assigned to other units”

• Remember: binary treatment, two potential outcomes is only a model

When is SUTVA likely to be violated?

• When there are spillovers (so i ’s treatment impacts j)

• Examples: vaccination/health, network externalities, equilibrium effects

I This is why we have “cluster-randomized” trials
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Summary

When treatment is randomly assigned (at an appropriate level), difference in outcomes between
treatment and control groups provides an unbiased estimate of the causal impact of treatment

Randomly assigning treatment status eliminates selection bias (at least in expectation)
because treatment, control groups are random samples of same underlying population

Economics 523 (Professor Jakiela) Selection Bias, Slide 38



Randomization: A Short History



The Idea of Randomization

Petrarch (1364):

“If a hundred thousand men of the same age, same temperament and habits, together with the same
surroundings, were attacked at the same time by the same disease, that if one half followed the

prescriptions of the doctors of the variety of those practicing at the present day, and that the other half
took no medicine but relied on nature’s instincts, I have no doubt as to which half would escape.”

van Helmont (who died in 1644):

“Let us take out of the Hospitals, pit of the Camps, or from elsewhere, 200 or 500 poor People, that
have Fevers, Pleurisies, etc. Let us divide them in halfes, let us cast lots, that one half of them may

fall to my share, and the other to yours; I will cure them without bloodletting...

we shall see how many Funerals both of us shall have.”

Source: Jamison (2019)
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Randomization: A Timeline (Part I)

1885 Psychologists Charles Pierce and Joseph Jastrow use randomization in a psychology experiment,
varying the order in which stimuli are presented to subjects (not to estimate treatment effects)

1898 Johannes Fibiger conducts a trial of an anti-diphtheria serum in which every other subject was
assigned to treatment (or control), considered to be the first controlled clinical trial

1923 Jerzy Neyman suggests the idea of potential outcomes

1925 Ronald Fisher suggests explicit randomization of treatments (in agricultural experiments)

1926 J.B. Amberson et al. study of sanocrysin treatments for tuberculosis: flipped a coin to determine
which group received sanocrysin treatment, which group served as controls

1948 Randomized trial of streptomycin treatment for tuberculosis conducted by the Medical Research
Council of Great Britain, first medical trial where treatment randomized at individual level

⇒ Randomized evaluations become the norm in medicine
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The Lady Tasting Tea

Chapter II of Fisher’s The Design of Experiments begins:

“A lady declares that by tasting a cup of tea made with milk
she can discriminate whether the milk or the tea infusion

was first added to the cup.”
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The Lady Tasting Tea

Null hypothesis (aka H0):

• Fisher believes that Dr. Bristol cannot taste the difference

A test of the hypothesis:

• “Our experiment consists in mixing eight cups of tea, four in one way and four in the
other, and presenting them to the subject for judgment in random order.”

Research design:

• Treatment: an indicator for having the milk poured in first

• Outcome of interest: a dummy for Muriel Bristol believing the milk was poured in first
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The Lady Tasting Tea: Experimental Design

Rule #1: do not confound your own treatment

• Critical assumption: if Dr. Bristol is unable to detect whether the milk was poured in first,
she will choose four cups at random (probability of selection equal for treatment, control)

I Allows us to calculate probability four correct cups chosen by chance “under the null”

• Fisher points out that the experimenter could screw this up:

“If all those cups made with the milk first had sugar added,
while those made with the tea first had none,

a very obvious difference in flavour would have been introduced
which might well ensure that all those made with sugar should be classed alike.”

• Gerber and Green (2012) refer to this as excludability
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The Lady Tasting Tea: Experimental Design

Rule #1B: do not accidentally confound your own treatment

• Fisher, in (perhaps) the earliest known scientific subtweet:

“It is not sufficient remedy to insist that
‘all the cups must be exactly alike’ in every respect except that to be tested.

For this is a totally impossible requirement.”

• To minimize likelihood of accidentally confounding your treatment, it’s best is to constrain
yourself by randomizing treatment assignments (à la Pierce and Jastrow, British TB trial)

I Minimizes the likelihood of unfortunate coincidences (in some circumstances)

I Highly controversial position at the time, and is still debated in some circles; alternative is to
force balance on observables (and then just hope that unobservables don’t matter too much)
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The Lady Tasting Tea: A Hypothesis Test

How should we interpret data from this experiment?

Suppose Dr. Bristol correctly identified all 4 “treated” cups

• How likely is it that this could have occurred by chance?

I There are
(

8
4

)
= 70 possible ways to choose 4 of 8 cups, and only one is correct

I A subject with no ability to tell treated from untreated cups has a 1/70 chance of success

I The p-value is the probability that an outcome at least as extreme as the one observed
would occur under the null (i.e. if the null hypothesis of no treatment effect were true)

I The p-value associated with this outcome is 1/70 ≈ 0.014, less than the cutoff for the
“standard level of significance” of 0.05 (as characterized by Fisher himself)
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Fisher’s Exact Test

Identified by Dr. Bristol?

Yes No

Milk poured first a b

Tea poured first c d

Is Dr. Bristol more likely to select cups where the milk was poured first?

• She chooses a of a + b treated cups correctly, and c of c + d untreated cups incorrectly

• How likely was such an outcome to have occurred at random (under the null)?
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Fisher’s Exact Test

Is Dr. Bristol more likely to select cups where the milk was poured first?

probability =

(
a + b

a

)(
c + d

c

)
(
a + b + c + d

a + c

) =

(a + b)!

(a!b!)

(c + d)!

c!d!

(a + b + c + d)!

(a + c)!(b + d)!

=
(a + b)!(c + d)!(a + c)!(b + d)!

a!b!c!d!(a + b + c + d)!

The p-value is the sum of the probabilities of observing outcomes that are at least as extreme
(i.e. at least as unlikely under the null hypothesis that Muriel Bristol chooses cups at random)
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The Lady Tasting Tea: Testing Alternative Hypotheses

Suppose Dr. Bristol correctly identified 3 “treated” cups

• How likely is it that this could have occurred by chance?

I There are
(

4
3

)
×
(

4
1

)
= 16 possible ways to choose 3 of 8 cups

I There are 17 ways to choose at least 3 correct cups

I The p-value associated with this outcome is 17/70 ≈ 0.243

I If our cutoff for significance is 0.05, we would not reject the null hypothesis

Implication: we should only reject H0 if Dr. Bristol identified all 4 treated cups

• In the actual experiment, Dr. Bristol identified all four cups correctly
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The Lady Tasting Tea: Size and Power

The size of a test is the likelihood of rejecting a true null (finding an impact when there is none)

• Fisher asserts that a test size 0.05 is typical

Alternative experiment: what if we had treated 3 out of 6 cups?

• There are
(

6
3

)
= 20 possible ways to choose 3 of 6 cups

• Best possible p-value is therefore 0.05

Alternative experiment: what if we had treated 3 out of 8 cups?

• There are
(

8
3

)
= 56 possible ways to choose 3 of 8 cups

• Best possible p-value is therefore 0.017, which is less than 0.014

⇒ More trials increases power, best to have equal numbers of treated, untreated cups
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The Lady Tasting Tea: Size and Power

An alternate experiment: an unknown number of treated cups

• Under the null, the probability of getting 8 right is 1 in 28

• Probability of getting 7 right is 8/256 = 0.03125

Design would achieve higher power with the same number of trials

• Research design would make it possible to reject the null hypothesis (that Dr. Bristol
cannot tell when the milk is added first) even when her ability to discriminate is imperfect

As Fisher discusses, uncertainty about number of treated cups has other unattractive properties

• Would subjects believe that either 0 or 8 cups might be treated?
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Ronald Fisher’s Contributions to Statistics

Key lesson to take away from “lady tasting tea” anecdote:
caffeine breaks with colleagues critical to advancement of science

Other contributions:

1. Introduced the modern randomized trial

2. Introduced the idea of permutation tests

3. Fixed “standard” test size at 0.05

Fisher is also a clear example of a not-so-nice man who made a strong contribution to science
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Randomization: A Timeline (Part II)

1942 Launch of Cambridge-Somerville Youth Study of at-risk boys

1962 Perry Preschool Project (in Ypsilanti, MI) and Early Training Project (in Murfreesboro, TN)
experiments randomized assignment of at-risk, low-income children to high-quality preschools

1967 New Jersey Income Maintenance Experiment (proposed by graduate student Heather Ross),
four other negative income tax experiments in the US between 1971 and 1982

1972 Abecedarian Project (in Orange County, NC) randomized intervention for at-risk infants

1974 Rubin introduces the concept of potential outcomes (as we know it)

1994 National Job Corps Study (by Mathematica/US Dept. of Labor)

1995 PROGRESA evaluation launched by Mexican government, evaluated by researchers at IFPRI

1998 Dutch NGO ICS Africa begins randomized trial of “deworming” in Kenyan primary schools...
in partnership with Michael Kremer, an Assistant Professor of Economics at Harvard University
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RCTs in Development Economics: Mexico’s Progresa

photo: Curt Carnemark / World Bank

• Mexican government piloted conditional cash transfers (CCTs) in the mid-1990s

• Economists within president’s office pushed for randomized roll out of pilot

• IFPRI researchers published initial findings in late 1990s
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RCTs in Development Economics: Busia, Kenya

photo: Stephanie Skinner / Deworm the World

• Michael Kremer convinces NGO ICS Africa to randomize interventions in Kenyan schools

• Study of deworming (w/ Edward Miguel) effectively launches RCT movement
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RCTs in Development Economics: Trends
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RCTs in Development Economics

In 2019, Michael Kremer, Esther Duflo, and Abhijit Banerjee won the Nobel Prize in economics
for their promotion of RCTs and their “experimental approach to alleviating global poverty”
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Regression Analysis of RCTs



Treatment Effects Under Random Assignment

Expected value of control group mean:

E [ȲC ] = E [Yi |Di = 0] = E [Y0,i |Di = 0] = E [Y0,i ]

equal to population mean because
control group is a random sample
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Treatment Effects Under Random Assignment

Expected value of control group mean:

E [ȲC ] = E [Yi |Di = 0] = E [Y0,i |Di = 0] = E [Y0,i ]

Expected value of treatment group mean:

E [ȲT ] = E [Yi |Di = 1] = E [Y1,i |Di = 1]

E [ȲT ] = E [Yi |Di = 1] = E [δi + Y0,i |Di = 1]

E [ȲT ] = E [Yi |Di = 1] = E [δi |Di = 1] + E [Y0,i |Di = 1]

E [ȲT ] = E [Yi |Di = 1] = E [δi ] + E [Y0,i ]
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H0: ATE = 0

Null hypothesis (H0):

The average treatment effect is zero: ATE = 0

Or, equivalently: ȲT = ȲC
0
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In Stata:
ttest y, by(t)
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Testing the Equality of Means in Stata

Stata: ttest y, by(t)
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OLS Regression
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OLS Regression on a Binary Independent Variable

0
1

2
3

4
5

6

D
ep

en
de

nt
 V

ar
ia

bl
e

 

0 1
 

Treatment Status

Simple regression framework for analyzing RCTs: Yi = α + βDi + εi

Treatment indicator Di = 0, 1 ⇒ only two sensible values of Ŷi
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OLS Regression on a Binary Independent Variable

Stata: reg y t
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Comparing the Approaches

ttest y, by(t) reg y t
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The Standard Error of a Difference in Means
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The Standard Error of a Difference in Means
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The Standard Error of a Difference in Means
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Empirical Exercise



Subsidizing Malaria Treatment in Kenya
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Subsidizing Malaria Treatment in Kenya
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Subsidizing Malaria Treatment in Kenya
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Subsidizing Malaria Treatment in Kenya
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Empirical Exercise: Takeaways

1. You should be able to open the Cohen, Dupas, and Schaner (2015) data set in Stata

2. In a bivariate regression on a (single) dummy variable, the estimated OLS coefficient β̂ is
the difference in means between the treatment group and the comparison group, which
can also be recovered from a t-test of the equality of means in the two groups

3. Same logic applies when we include separate dummies for multiple (randomly-assigned)
treatments, with no interaction terms and no additional covariates (or strata dummies)

4. When the treatment dummy aggregates multiple distinct treatment intensities, each
treated observation weighted equally in calculating the estimated treatment effect
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The End!



Regression Analysis of RCTs in R and Python



Treatment Effects Under Random Assignment

Expected value of control group mean:

E [ȲC ] = E [Yi |Di = 0] = E [Y0,i |Di = 0] = E [Y0,i ]

equal to population mean because
control group is a random sample
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Treatment Effects Under Random Assignment

Expected value of control group mean:

E [ȲC ] = E [Yi |Di = 0] = E [Y0,i |Di = 0] = E [Y0,i ]

Expected value of treatment group mean:

E [ȲT ] = E [Yi |Di = 1] = E [Y1,i |Di = 1]

E [ȲT ] = E [Yi |Di = 1] = E [δi + Y0,i |Di = 1]

E [ȲT ] = E [Yi |Di = 1] = E [δi |Di = 1] + E [Y0,i |Di = 1]

E [ȲT ] = E [Yi |Di = 1] = E [δi ] + E [Y0,i ]
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H0: ATE = 0

Null hypothesis (H0):

The average treatment effect is zero: ATE = 0

Or, equivalently: ȲT = ȲC
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In Stata: ttest y, by(t)

In R: t.test(y ∼ t, data = df)

In Python:
scipy.stats.ttest ind(

df[’y’][df[’t’] == 1],

df[’y’][df[’t’] == 0],

alternative="two-sided")
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Testing the Equality of Means in R and Python

R:

t.test(y ∼ t, data = df)

Welch Two Sample t-test

data: y by t

t = -5.7048,

df = 85.77,

p-value = 1.626e-07

alternative hypothesis: true ...

95 percent confidence interval:

-1.2873994 -0.6220043

sample estimates:

mean in group 0 mean in group 1

3.085472 4.040173

Python:

import scipy

scipy.stats.ttest ind(

df[’y’][df[’t’] == 1],

df[’y’][df[’t’] == 0],

nan policy = "omit",

alternative="two-sided")

TtestResult(statistic=5.6380327702693,

pvalue=5.8686215171853224e-08,

df=198.0)
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The Standard Error of a Difference in Means
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When ȲT and ȲC are independent:

SE
(
ȲT − ȲC

)
=
√

SE 2
ȲT

+ SE 2
ȲC

=SEȲT

√
s2
T
nT

=

√∑
i∈T (Yi−Ȳ)2

nT (nT−1)

where nT is treatment observations,

and
∑

i∈T sums over treated i
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The Standard Error of a Difference in Means
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When ȲT and ȲC are independent:

SE
(
ȲT − ȲC

)
=
√

SE 2
ȲT

+ SE 2
ȲC

⇒ t =
(
ȲT − ȲC

)
/
√

SE 2
ȲT

+ SE 2
ȲC
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The Standard Error of a Difference in Means
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When ȲT and ȲC have variance s2:

SE
(
ȲT − ȲC

)
=
√

s2/nT + s2/nC

where: s2 =
∑

i(Yi−Ȳ )2

(N−2)
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OLS Regression on a Binary Independent Variable
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Treatment Status

Simple regression framework for analyzing RCTs: Yi = α + βDi + εi

Treatment indicator Di = 0, 1 ⇒ only two sensible values of Ŷi
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OLS in R and Python

R:

ols <- lm(y ∼ t, data = df)

summary(ols)

Python:

import statsmodels.formula.api as smf

model = smf.ols(’y t’, data = df).fit()

print(model.summary())
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Empirical Exercise
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Subsidizing Malaria Treatment in Kenya
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Empirical Exercise: Takeaways

1. You should be able to open the Cohen, Dupas, and Schaner (2015) data set in Stata

2. In a bivariate regression on a (single) dummy variable, the estimated OLS coefficient β̂ is
the difference in means between the treatment group and the comparison group, which
can also be recovered from a t-test of the equality of means in the two groups

3. Same logic applies when we include separate dummies for multiple (randomly-assigned)
treatments, with no interaction terms and no additional covariates (or strata dummies)

4. When the treatment dummy aggregates multiple distinct treatment intensities, each
treated observation weighted equally in calculating the estimated treatment effect
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