


Imperfect Compliance



How High Is Program Take-Up?

Even “free” programs involve opportunity costs for participants, so take-up is often low

Intervention Take-Up Source

Business training 65% McKenzie & Woodruff (2013)
Deworming medication 75% Kremer & Miguel (2007)
Microfinance 13% - 31% JPAL & IPA (2015)

It is often the case that only people who do a program can be impacted by the program*
= We might like to know how much program impacted program participants

= Not only relevant in randomized trials (who benefits from free primary education?)

*Often the case, but not always!
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Compliers vs. Never-Takers

compliers Will do the program if invited

never-takers |  Will not do the program if invited
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Compliers vs

. Never-Takers

compliers Yoi

never-takers Yoi

Yoi

Economics 523 (Professor Jakiela)

Treatment-on-the-Treated, Slide 5




Imperfect Compliance: A Thought Experiment

evaluation assigned to program outcomes
sample treatment take-up )

Yt =5

N = 200 Nt = 100 50 percent Yc=0

Questions:
® What can we say about the average impact of treatment on program participants?

® What can we say about the average outcome among those who did the program?
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Imperfect Compliance

Suppose outcomes are impacted by program participation (P;), not treatment status (T;):
Yi = Yoi + 6P
® Program take-up is endogenous conditional on treatment: E[Yg;|P; = 1] # E[Yo;|P; = 0]
® Only those randomly assigned to treatment (T; = 1) are eligible: E[P;|T; =0] =0

® Not everyone participates: E[P;|T; =1 =A< 1

Two possible regressions:
® Regress Y on P using data from the treatment (T; = 1) group

® Regress Y on T using data from the treatment and comparison groups
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How Not to Estimate the Impact of Treatment on the Treated

If we estimate the regression equation Y; = o + SP; + ¢; using data from the treatment group:
B=E[Yi|P=1] - E[Yi|Pi=0]
= E[Y4|P; = 1] — E[Yoi|Pi = 0]
= E[Yoi +0i|Pi = 1] — E[Yoi|Pi = 0]
= E[6i|Pi =1] + E[Yoi|Pi =1] — E[Yoi|Pi = 0]

= E [6i|compliers] + E [Yoi|compliers] — E [Yoi|never-takers]

impact of TOT selection bias
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The Intent-to-Treat (ITT) Effect

If we estimate the regression equation Y; = a + 8T, + ¢;:
B=EYiTi=1-E[Yi|Ti=0]

E[Y;|T; = 1] is a weighted average of outcomes for complier and never-takers:
E[YTi =1 = AE[Yu|Ti=1and P = 1] + (1 — \)E[Yoi|T; = 1 and P; = 0]
= AE[6;+ Yoi| Ti=1and P = 1]+ (1 — \)E[Yoi| Ti = 1 and P; = 0]
= AE [dj|compliers] + XE [ Yoi|compliers] + (1 — A)E [ Yoi|never-takers]

= AE [0i|compliers] + E [ Yoi]
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The Intent-to-Treat (ITT) Effect

Substituting this into our expression for /:
B=EYi|Ti=1] - E[YIT = 0]
= XE [di|compliers] + E [Yoi] — E [ Yoi]

= X E [di|compliers]
[

impact of TOT

= Low compliance (A < 1) scales down the estimated treatment effect

= ITT effect is average across population (T; = 1), including zero impact on never-takers
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The Impact of Treatment on the Treated

ITT = ATOT < TOT = ITT/A

E[Y;|Ti=1]-E[Y;| T;=0]
E[P;|T,=1]—E[P;| T =0]

The treatment on the treated (TOT) estimator: [;or =

e TOT scales up ITT effect to reflect imperfect take-up

e The identifying assumption is that treatment only works through program take-up
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Treatment on the Treated: Implementation (Approach #1)

Estimating the impact of treatment on the treated via two separate regressions:

Intent-to-treat (aka reduced form): impact of treatment assignment on outcome of interest
Yi = ane + Biee Ti + €i

First stage: impact of assignment to treatment on program participation:
Pi=oars+BsTite

Combine OLS coefficients to estimate impact of treatment on the treated: Sior = Bitt/ S
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Treatment on the Treated: Implementation (Approach #2)

Approach #1 is equivalent to using treatment as an instrument for program participation
1. Regress Y on P, the predicted value of P from first-stage regression

Assumptions required for instrumental variables estimation:
1. Instrument is exogenous (i.e. not correlated with error term in first stage)
2. Instrument is correlated with treatment (first stage)

3. Only impacts outcomes through program participation (exclusion restriction)
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Treatment on the Treated: Implementation (Approach #2)

Estimated via two-stage least squares (2SLS):
® First stage: P, = ar + BsT; + €
e Second stage: Y; = o, + B P + (i
Easy to implement using Stata's ivregress 2sls command

® Running two (separate) regressions yields incorrect standard error
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Treatment on the Treated: Implementation (Approach #3)

2SLS is also equivalent to a control function approach:
e First stage: P; = an + BT +¢€;
e Control function second stage: Y; = a;, + 8, P; + vé +
First-stage residual captures the endogenous portion of program participation
® Variation in P; that remains is the variation explained by T;

® Second regression equivalent to regressing Y; on residuals from a regression of P; on €;

Economics 523 (Professor Jakiela) Treatment-on-the-Treated, Slide 16



Treatment on the Treated: Summary of Approaches

1. Divide ITT effect by first stage (impact of T on P)
2. Two-stage least squares (regress Y on predictions from regression of P on T)

3. Control function approach (control for residuals from regression of P on T)
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Treatment on the Treated: Example

Data from a youth entrepreneurship intervention targeting young women in Nairobi, Kenya
® treatment is a dummy for being randomly assigned to the treatment group
® training is a dummy for attending at least one day of business training
® strata is an ID number for randomization strata (neighborhoodxmonth)
® income is a measure of weekly income two years after treatment (from endline survey)
First stage, reduced form regressions take standard form
® First stage: regress training treatment i.strata, r

®* Reduced form: regress income treatment i.strata, r
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TOT Example: First Stage and Reduced Form Results

(1) (2)
Training Income
Treatment 0.6105267 165.9126
(0.0260283) (73.81483)
[0.000] [0.025]
Strata fixed effects Yes Yes
R-squared 0.470 0.030
Obs. 680 680

Robust standard errors in parentheses; p-values in square brackets.
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TOT Example: Two-Stage Least Squares (2SLS)

Stata syntax for 2SLS:

ivregress 2sls income (training = treatment) i.strata, r

Generates same coefficients as two-step process, but difference standard errors

regress training treatment i.strata, r
predict phat, xb
regress income phat i.strata, r
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TOT Example: Two-Stage Least Squares (2SLS)

. ivregress 2sls income (training = treatment) i.strata, r
Instrumental variables 2SLS regression Number of obs = 680
wald chi2(14) = 28.49
Prob > chi2 0.0122
R-squared = 0.0305
Root MSE - 950.84.
Robust
income | Coefficient std. err. z P>|z| [95% conf. interval
training 271.7533  119.5059 2.27 e.023 37.52603  505.9805
strata
494002011 243.1708  144.5925 1.68 ©0.693  -40.22521  526.5668
494004004 -89.89336  109.9156  -0.82 ©0.413 -305.324  125.5373
494004011 39.53772  151.3919 0.26 ©0.794 -257.185  336.2604
594004004 52.2759  155.0265 0.3 ©.736  -251.5705  356.1222
594004011 -106.3099 130.9806  -0.81 ©.417  -363.6272  150.4073
594012004 238.6223  146.6926 1.63 ©.104  -48.88987  526.1345
594012011 319.2648  185.929 1.72  ©.686  -45.14938  683.6789
694002004 -167.3286 166.5964  -1.00 ©.315  -493.8515  159.1944
694002011 -187.3286  160.601  -1.17 ©.243  -502.1007  127.4436
694004004 -151.1399  194.2218  -0.78 ©.436  -531.8676  229.5278
694004011 -260.9 196.4015  -1.33 0.184  -645.8398  124.0398
694012004 209.9024  175.767 1.19 ©.232  -134.5947  554.3994
694012011 233.7189  142.9428 1.64 ©.102  -46.44377  513.8815
_cons 413.216  77.32459 5.34  0.000 261.6626  564.7694
Instrumented: training
Instruments: 494002011.strata 494004004.strata 494004011.strata
594004004.strata 594004011.strata 594012004.strata
594012011.strata 694002004.strata 694002011.strata
694004004, strata 694004011.strata 694012004.strata
694012011.strata treatment
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TOT Example: Two-Stage Least Squares (2SLS)

. quietly regress training treatment i.strata, r
. predict phat, xb
. regress income phat i.strata, r
Linear regression Number of obs = 680
F(14, 665) = 1.97
Prob > F = 0.0177
R-squared = 0.0295
Root MSE = 962
Robust
income | Coefficient std. err. t P>|t]| [95% conf. interval]
phat 271.7533 120.9035 2.25 0.025 34.35466 509.1519
strata
494002011 243.1708 147.3034 1.65 0.099 -46.06501 532.4066
494004004 -89.89336 112.5547 -0.80 0.425 -310.8988 131.1121
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TOT Example: The Control Function Approach

. quietly regress training treatment i.strata, r
. predict presid, resid
. regress income training presid i.strata, r
Linear regression Number of obs 680
F(15, 664) 1.98
Prob > F = 0.0144
R-squared = 0.0322
Root MSE = 961.36
Robust
income | Coefficient std. err. t P>|t]| [95% conf. interval]
training 271.7533  120.8254 2.25 @.025 34.50743 508.9991
presid -120.5366 173.7454 -0.69 0.488 -461.6932 220.6199
strata
494002011 243.17e8 146.5754 1.66 0.098 -44.63639 530.978
494004004 -89.89336 111.6222 -0.81 0.421 -309.0684 129.2816
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TOT Example: Interpretation

The entrepreneurship promotion intervention increases income
® TOT effects are larger than ITT effects (is this always true?)
® Assumption: program has no impact on women who do not participate
» When might this be a reasonable assumption?
» When might this not be a reasonable assumption?
® Which is more policy relevant: the ITT estimates or the TOT estimates?

® Could you estimate the TOT impacts of self-employment? Why or why not?
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Two-Sided Non-Compliance



Two-Sided Non-Compliance

We sometimes evaluate programs that are available to those in the treatment group

® Examples: medical/health treatment, schooling, vocational /business training, childcare,
access to credit, migration, agricultural inputs, management consulting, export contracts

® In such settings, an intervention involves encouraging/facilitating takeup

® Treatment is random and (one hopes) strongly associated with program participation
» Compliers participate when assigned to treatment, but not when assigned to control
> Some people in the treatment group may choose not to participate

» Some people in the control group may still participate in the program
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IV Estimates with Two-Sided Non-Compliance

T=0 T=1
always takers always takers
compliers compliers
never-takers never-takers

IV estimates tell us local average treatment effect (LATE) on compliers
® Monotonicity assumption: there are no defiers
® We can't estimate impacts on always takers and never-takers because being assigned to

treatment doesn't change their take-up (i.e. program participation) decision
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Assumptions Required for IV Estimation of LATE

. Instrument is exogenous (OK in an RCT)
. Instrument is correlated with treatment (first stage)
. Only impacts outcomes through take-up (exclusion restriction)
. Monotonicity (i.e. no defiers)
» Treatment either moved people into participation or out of participation, not both

> Not required if treatment effects are homogeneous
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Characteristics of the Compliers

The impact of treatment on program participation indicates the proportion compliers

E[P/|T, = 1] — E[P,|T, = 0] = number olfvcompllers _ %

This is also true in sub-populations, e.g. among observations with X =1 for some X

E[P|Ti=1and X; =1] — E[P;|T; =0 and X; = 1] = =

Relative frequency of characteristics X = 1 among compliers, relative to entire population:

E[P;|T;=1 and X;=1]—E[P;| ;=0 and X;=1]
E[P;|T;=1]-E[P;| T;=0]
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