Williams College ECON 523:

Program Evaluation for International Development

Lecture 4: Diff-in-Diff in a Panel Data Framework

Professor: Pamela Jakiela

ohoto: Daniella Van Leggelo-Padilla / World Bank

2×2 Diff-in-Diff Specifications

To implement diff-in-diff in a regression framework, we estimate:

$$Y_{i,t} = \alpha + \beta D_i + \theta \textit{Post}_t + \delta (D_i * \textit{Post}_t) + \varepsilon_{i,t}$$

Where:

- $D_i =$ treatment dummy
- *Post_i* = dummy for post-treatment period
- $D_i * Post_t = interaction term$

Panel data: multiple units, over time

- At least two time periods
- Two treatment groups, possible more units

Difference-in-Differences Estimation: Standard Errors

Only one correct method for calculating cell means and associated standard errors

• Multiple ways to handle the standard errors of the differences in means

 $\mathsf{Heteroskedastic}\ \mathsf{SEs} \leftrightarrow \mathsf{SEs}\ \mathsf{are}\ \mathsf{independent}$

 Correct but conservative 		Doctors	Midwives
Homoskedastic SEs ↔ common variance	pre-1847	9.85	4.03
• Economists would never!		(1.34)	(0.92)
Calculate SE of within-year difference	post-1847	3.53	3.13
⇒ Lower variance		(0.63)	(0.55)

Difference-in-Differences Estimation: Standard Errors

Difference-in-Differences Estimation: Standard Errors

Heteroskedasticity-robust SE:

$$\Rightarrow \sqrt{SE_{T,pre}^2 + SE_{C,pre}^2 + SE_{T,post}^2 + SE_{C,post}^2} = \sqrt{1.34^2 + 0.92^2 + 0.63^2 + 0.55^2} \approx 1.83$$

Interacted 2×2 diff-in-diff specification equivalent^{*} to regression of $Y_T - Y_C$ on $Post_t$:

$$Y_{T,t=\tau} - Y_{C,t=\tau} = \zeta + \lambda Post_t + \epsilon_{it}$$

where:

- $Y_{T,t=\tau} Y_{C,t=\tau}$ = treatment vs. comparison difference in outcome
- $\lambda = \text{coefficient of interest}$ (the treatment effect)
- ζ = selection bias (pre-treatment difference between T and C)

* Identical point estimates, different standard errors

Interacted 2×2 diff-in-diff specification also equivalent to first differences (in short panels):

$$Y_{i,t=2} - Y_{i,t=1} = \eta + \gamma D_i + \epsilon_{it}$$

where:

- $Y_{i,t=2} Y_{i,t=1}$ = change (pre vs. post) in outcome of interest
- $\gamma = \text{coefficient of interest}$ (the treatment effect)
- $\eta =$ time trend (average change in comparison group)

Interacted 2×2 diff-in-diff specification also equivalent to first differences (in short panels):

 $\Delta \mathsf{FTE}_i = \eta + \frac{\gamma}{\mathsf{N}}\mathsf{NJ}_i + \epsilon_i$

where:

- ΔFTE_i = change in full-time employment in restaurant *i*
- $\gamma = \text{difference in mean change in NJ stores (vs. PA stores)}$
- $\eta = \text{constant}$ (mean change in FTE in PA)

Example: Minimum Wages and Employment in the Fast-Food Industry

	Model		
ndependent variable	(i)	(ii)	
New Jersey dummy	2.33 (1.19)	2.30 (1.20)	
Controls for chain and ownership ^b	no	yes	
Controls for region ^c	no	no	
Standard error of regression	8.79	8.78	
Probability value for controls ^d		0.34	

Notes: Standard errors are given in parentheses. The sample consists of 357 stores with available data on employment and starting wages in waves 1 and 2. The dependent variable in all models is change in FTE employment. The mean and standard deviation of the dependent variable are -0.237 and 8.825, respectively. All models include an unrestricted constant (not reported).

 ${}^{\rm b}{\rm Three}$ dummy variables for chain type and whether or not the store is company-owned are included.

^cDummy variables for two regions of New Jersey and two regions of eastern Pennsylvania are included.

^dProbability value of joint F test for exclusion of all control variables.

source: Card and Krueger (1994)

 2×2 panel data diff-in-diff specification:

$$Y_{i,t} = \alpha + \beta EverTreated_i + \theta Post_t + \delta D_{i,t} + \varepsilon_{i,t}$$

where:

- *EverTreated*_i = dummy for ever-treated unit(s)
- *Post_t* = dummy for post-treatment period(s)
- $D_{i,t}$ = treatment dummy, equal to one if unit *i* is treated in period *t*
- $\delta = diff-in-diff$ estimate of treatment effect

	t = 1	t = 2	t = 3	t = 4	t = 5
Unit 1	0	0	0	0	0
Unit 2	0	0	0	0	0
Unit 3	0	0	0	1	1
Unit 4	0	0	0	1	1
Unit 5	0	0	0	1	1

OLS specification:

$$Y = \alpha + \beta EverTreated_i + \theta Post_t + \delta D_{i,t}$$

	t = 1	t = 2	t = 3	t = 4	t = 5
Unit 1	0	0	0	0	0
Unit 2	0	0	0	0	0
Unit 3	0	0	0	1	1
Unit 4	0	0	0	1	1
Unit 5	0	0	0	1	1
\bar{D}_t		0		0.	6

OLS specification:

$$Y = \alpha + \beta EverTreated_i + \theta Post_t + \delta D_{i,t}$$

By Frisch-Waugh-Lovell: equivalent to regression on normalized D_{it} \rightarrow Subtract off mean $D_{i,t}$ in pre, post periods

	t = 1	t = 2	t = 3	<i>t</i> = 4	t = 5
Unit 1	0	0	0	-0.6	-0.6
Unit 2	0	0	0	-0.6	-0.6
Unit 3	0	0	0	0.4	0.4
Unit 4	0	0	0	0.4	0.4
Unit 5	0	0	0	0.4	0.4
\bar{D}_t		0		0.	.6

OLS specification:

$$Y = \alpha + \beta EverTreated_i + \theta Post_t + \delta D_{i,t}$$

By Frisch-Waugh-Lovell: equivalent to regression on normalized D_{it} \rightarrow Subtract off mean $D_{i,t}$ in pre, post periods

	t = 1	t = 2	t = 3	t = 4	t = 5
Unit 1	0.24	0.24	0.24	-0.36	-0.36
Unit 2	0.24	0.24	0.24	-0.36	-0.36
Unit 3	-0.16	-0.16	-0.16	0.24	0.24
Unit 4	-0.16	-0.16	-0.16	0.24	0.24
Unit 5	-0.16	-0.16	-0.16	0.24	0.24
$ar{D}_t$		0		0.	.6

OLS specification: $Y = \alpha + \beta EverTreated_i + \theta Post_t + \delta D_{i,t}$ By Frisch-Waugh-Lovell: equivalent to regression on normalized D_{it} \rightarrow Subtract off mean $D_{i,t}$ in pre, post periods \rightarrow Subtract off mean of de-meaned $D_{i,t}$ in T, C

Panel data diff-in-diff specification including time fixed effects:

$$Y_{i,t} = \alpha + \gamma EverTreated_i + \delta D_{i,t} + \nu_t + \varepsilon_{i,t}$$

where:

- *EverTreated*_i = dummy for ever-treated unit(s)
- $D_{i,t}$ = treatment dummy, equal to one if unit *i* is treated in period *t*
- $\delta = diff-in-diff$ estimate of treatment effect
- $\nu_t = \text{time-period fixed effects}$

	t = 1	t = 2	t = 3	t = 4	t = 5
Unit 1	0	0	0	0	0
Unit 2	0	0	0	0	0
Unit 3	0	0	0	1	1
Unit 4	0	0	0	1	1
Unit 5	0	0	0	1	1
\bar{D}_t	0	0	0	0.6	0.6

OLS with fixed effects equivalent to a regression of: normalized $\tilde{Y}_{i,t}$ on normalized $\tilde{D}_{i,t}$

To normalize $\tilde{D}_{i,t}$, we \rightarrow Subtract off period-specific means, \bar{D}_t

	t = 1	t = 2	t = 3	t = 4	t = 5
Unit 1	0	0	0	-0.6	-0.6
Unit 2	0	0	0	-0.6	-0.6
Unit 3	0	0	0	0.4	0.4
Unit 4	0	0	0	0.4	0.4
Unit 5	0	0	0	0.4	0.4
\bar{D}_t	0	0	0	0.6	0.6

OLS with fixed effects equivalent to a regression of: normalized $\tilde{Y}_{i,t}$ on normalized $\tilde{D}_{i,t}$

To normalize $\tilde{D}_{i,t}$, we \rightarrow Subtract off period-specific means, \bar{D}_t

	t = 1	t = 2	t = 3	t = 4	t = 5
Unit 1	0.24	0.24	0.24	-0.36	-0.36
Unit 2	0.24	0.24	0.24	-0.36	-0.36
Unit 3	-0.16	-0.16	-0.16	0.24	0.24
Unit 4	-0.16	-0.16	-0.16	0.24	0.24
Unit 5	-0.16	-0.16	-0.16	0.24	0.24
$ar{D}_t$	0	0	0	0.6	0.6

OLS with fixed effects equivalent to a regression of: normalized $\tilde{Y}_{i,t}$ on normalized $\tilde{D}_{i,t}$

To normalize $\tilde{D}_{i,t}$, we \rightarrow Subtract off period-specific means, \bar{D}_t

 \rightarrow Subtract off mean of de-meaned $D_{i,t}$ in T, C

	t = 1	t = 2	t = 3	t = 4	t = 5
Unit 1	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$
Unit 2	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$
Unit 3	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$
Unit 4	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$
Unit 5	$\tilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$	$ ilde{Y}_{i,t}$

OLS with fixed effects equivalent to a regression of: normalized $\tilde{Y}_{i,t}$ on normalized $\tilde{D}_{i,t}$

To normalize $\tilde{D}_{i,t}$, we \rightarrow Subtract off period-specific means, \bar{D}_t \rightarrow Subtract off mean of de-meaned $D_{i,t}$ in T, C

Fixed effects absorb additional variation in Y

Standard errors depend on the residuals

Why used fixed effects instead of dummies for post-treatment period and ever-treated group?

- Fixed effects "soak up" period-specific shocks, unit-specific variation better
 - Smaller residuals \Rightarrow smaller standard errors \Rightarrow statistical power
- Inclusion of time fixed effects yield should not lead to substantial changes in coefficients
 - Coefficients mechanically identical in balanced panels

Two-way fixed effects specification:

$$Y_{i,t} = \alpha + \eta_i + \nu_t + \delta D_{i,t} + \varepsilon_{i,t}$$

where η_i is an individual FE, ν_t is a time FE, and δ is DD estimator

Use two-way fixed effects with caution when treatment starts at different times in different units, treatment is continuous, or variance of treatment differs across treated units for other reasons, as we discuss further in the next module.

Does a ban on informal health providers save lives? Evidence from Malawi $\dot{\mathbf{x}}$

Susan Godlonton ^{a,b}, Edward N. Okeke ^{c,*}

^a Department of Economics, Williams College, United States
^b IFPRI, United States
^c Department of Economics, Sociology and Statistics, RAND, United States

ARTICLE INFO

ABSTRACT

Article history: Informal health providers ranging from drug vendors to traditional healers account for a large fraction of health Received 3 January 2015 care provision in developing countries. They are, however, largely unlicensed and unregulated leading to concern Received in revised form 2 September 2015 that they provide ineffective and, in some cases, even harmful care. A new and controversial policy tool that has Accepted 3 September 2015 been proposed to alter household health seeking behavior is an outright ban on these informal providers. The Available online 11 September 2015 theoretical effects of such a ban are ambiguous. In this paper, we study the effect of a ban on informal (traditional) birth attendants imposed by the Malawi government in 2007. To measure the effect of the ban, we use a Keywords: difference-in-difference strategy exploiting variation across time and space in the intensity of exposure to the Informal health providers ban. Our most conservative estimates suggest that the ban decreased use of traditional attendants by about Government bans 15 percentage points, Approximately three quarters of this decline can be attributed to an increase in use of Child mortality the formal sector and the remainder is accounted for by an increase in relative/friend-attended births. Despite the rather large shift from the informal to the formal sector, we do not find any evidence of a statistically significant reduction in newborn mortality on average. The results are robust to a triple difference specification using young children as a control group. We examine several explanations for this result and find evidence consistent with quality of formal care acting as a constraint on improvements in newborn health.

source: Godlonton and Okeke (2015)

source: Godlonton and Okeke (2015)

source: Godlonton and Okeke (2015)

Godlonton and Okeke (2015) estimate regression specification:

 $Y_{ict} = \alpha + \theta HighExposure_{c} + \delta (HighExposure_{c} \times Post_{t}) + X_{ict}\beta + \tau_{t} + \varepsilon_{ict}$

where:

- $HighExposure_c = indicator for (more) treated clusters (pre-ban use of TBAs above 75th percentile)$
- $HighExposure_c \times Post_t = indicator$ for treated cluster-months
- $\delta = diff-in-diff$ estimate of treatment effect
- X_{ict} = set of control variables (e.g. household size, etc.)
- τ_t = fixed effect for month of birth (e.g. January 2007)
- ε_{ict} = mean-zero error term

Variables	(1)	(2)	(3)	(4)	(5)	(6)
A. Birth attendant is informal a	attendant					
High exposure × Post	-0.189***	-0.190***	-0.184***	-0.187***	-0.154***	-0.188**
	(0.0146)	(0.0130)	(0.0141)	(0.0144)	(0.0126)	(0.0146)
High exposure	0.344***	0.321***	0.318***	0.320***	0.267***	
	(0.0143)	(0.0131)	(0.0123)	(0.0127)	(0.0110)	
Post				0.0134	-0.0655	-0.0009
				(0.0667)	(0.0908)	(0.0679)
Constant	0.0411***	0.0537	0.0512	1.848***	3.525***	0.265***
	(0.00204)	(0.0415)	(0.0410)	(0.284)	(0.440)	(0.0637)
Observations	19,607	18,673	18,673	18,673	12,491	18,673
R-squared	0.138	0.149	0.150	0.148	0.113	0.209
B. Birth attendant is formal see	tor provider					
High exposure \times Post	0.145***	0.144***	0.143***	0.146***	0.109***	0.150***
	(0.0157)	(0.0136)	(0.0153)	(0.0152)	(0.0152)	(0.0165)
High exposure	-0.317***	-0.270***	-0.269***	-0.271***	-0.206***	
	(0.0177)	(0.0150)	(0.0152)	(0.0149)	(0.0155)	
Post				0.0660	0.132	0.00746
				(0.0794)	(0.0889)	(0.0974)
Constant	0.808***	0.726***	0.730***	-1.668***	-2.433***	0.446***
	(0.00257)	(0.0431)	(0.0429)	(0.391)	(0.479)	(0.0995)
Controls	No	Yes	Yes	Yes	Yes	Yes
Controls × Post	No	No	Yes	Yes	Yes	Yes
District-specific trend	No	No	No	Yes	Yes	No
Trimmed data	No	No	No	No	Yes	No
Cluster fixed effects	No	No	No	No	No	Yes
Observations	19,607	18,673	18,673	18,673	12,491	18,673

Note: for them / the expendent varianties is an indicate the advit attended by an intermed limit attendant, for the expendent varianties is an indicate the advit attended by a intermed by a formation of the expendent varianties is an indicate the expendent varianties is an indicate the expendent varianties is an indicate the expension of the e

** p < 0.05.

* p < 0.1.

source: Godlonton and Okeke (2015)

Variables	(1)	(2)	(3)	(4)	(5)	(6)
A. Birth attendant is a relative	or friend					
High exposure × Post	0.0414*** (0.00694)	0.0417*** (0.00725)	0.0364*** (0.00863)	0.0366*** (0.00918)	0.0389*** (0.0110)	0.0351***
High exposure	- 0.0256*** (0.00836)	- 0.0424*** (0.00933)	- 0.0396*** (0.00982)	- 0.0399*** (0.0101)	-0.0496*** (0.0123)	
Post				-0.0476 (0.0543)	-0.0367 (0.0812)	0.121 (0.0812)
Constant	0.105*** (0.00151)	0.186*** (0.0542)	0.184*** (0.0536)	0.750*** (0.236)	0.251 (0.329)	0.202 *** (0.0642)
Observations	19,607	18,673	18,673	18,673	12,491	18,673
R-squared	0.022	0.041	0.042	0.039	0.042	0.133
B. Birth was unattended						
High exposure × Post	0.00281 (0.00512)	0.00322 (0.00491)	0.00334 (0.00493)	0.00247 (0.00557)	0.00541 (0.00543)	0.00116 (0.00518
High exposure	0.000257 (0.00338)	- 0.00614* (0.00339)	- 0.00622 (0.00369)	-0.00629 (0.00393)	- 0.00931* (0.00493)	
Post				0.0110 (0.0474)	0.00680 (0.0572)	-0.0164 (0.0513)
Constant	0.0306*** (0.000623)	0.0184 (0.0267)	0.0173 (0.0265)	-0.0440 (0.158)	-0.234 (0.200)	0.0319 (0.0346)
Controls	No	Yes	Yes	Yes	Yes	Yes
Controls × Post	No	No	Yes	Yes	Yes	Yes
District-specific trend	No	No	No	Yes	Yes	No
Trimmed data	No	No	No	No	Yes	No
Cluster fixed effects	No	No	No	No	No	Yes
Observations	19,607	18,673	18,673	18,673	12,491	18,673
R-squared	0.009	0.033	0.034	0.033	0.038	0.097

Note: In frank (1 top) the dependent wrakite is an indicator for a listin attended by a ratification of fixed while in Parcel T (bottom) the dependent variable is an indicator for an identification of the dependent variable is an indicator for an identification of the dependent variable is an indicator for an identification of the dependent variable is an indicator for an identification of the dependent variable is an indicator for an identification of the dependent list is indicated to an identification of the dependent variable is an indicator for an identification of the dependent variable is an indicator for an identification of the dependent list is indication of the dependent variable is an indicator for an identification of the dependent variable is an indicator for an identification of the dependent variable is an identification of the dependent varia

*** p < 0.01.

* p<0.05.

source: Godlonton and Okeke (2015)

Variables	(1)	(2)	(3)	(4)	(5)	(6)
A Child death within a	he first we	k.				
High exposure × Post	-2.939	-2.742	0.319	-0.645	1.712	-0.344
	(3.500)	(3.530)	(3.669)	(3.706)	(4.121)	(3.508)
High exposure	5.311**	5.383*	4.528	4.661	2.850	
	(2.455)	(2.812)	(2.854)	(2.912)	(3.380)	
Post				- 25.62	-33.96	- 13.10
				(15.37)	(20.75)	(27.30)
Constant	21.39***	8.271	8.075	133.3***	139.7***	5.029
	(0.414)	(9.116)	(9.053)	(34.58)	(35.83)	(14.15)
Observations	35,246	33,748	33,748	33,748	22,317	33,748
R-squared	0.005	0.010	0.010	0.008	0.009	0.037
8. Child deeth within t	be first ma	111				
High exposure × Post	-4.150	-4.414	-1.316	-1.908	-0.211	- 2.760
	(4.242)	(4.274)	(4.369)	(4.515)	(4.603)	(4.337)
High exposure	6.659**	6.292*	5,465	5.428	3.899	
	(3.142)	(3.395)	(3.472)	(3.531)	(3.994)	
Post				-35.96	-54.18	-7.293
				(26.75)	(35.46)	(44.58)
Constant	31.50***	22.13*	21.72*	208.7***	231.5***	21.07
	(0.543)	(11.61)	(11.49)	(41.97)	(54.47)	(15.41)
Controls	No	Yes	Yes	Yes	Yes	Yes
Controls × Post	No	No	Yes	Yes	Yes	Yes
District-specific trend	No	No	No	Yes	Yes	No
Trimmed data	No	No	No	No	Yes	No
Chater fixed effects	No	No	No	NO	No	Yes
Observations	35,246	33,748	33,748	33,748	22,317	33,748
R-squared	0.005	0.012	0.012	0.010	0.012	0.038
obes: In Vanie A one one, Desirg been, In Vanie II month of being boen, B oung mothers (age < ocenen who are marri- ummies for the partne evalth quintile dummie able A.1). In Column 5, nr 'fhoor and 'ceiling' eff first have been resolute	the depense oth variable sirths. Cont 18), dumm ed or living r's educatie s, and a ru ects. Full se we exclud liets. Colum ed with class	hable is an lent variable is have been rols include hies for m g with a po- onal attain ral-urban e villages v an 6 is equi- ter fixed e	Indicator F le is an ind en scaled to le indicato urtner, dui ment, diss indicator. I cients is n ivalent to C flers. Post	or a newdoo icator for a sallow corf rs for male vel of schor nmies for i ance to the Each colum ot shown t ne prevaler Column 3 es = 1 if birth	movements on the recent of the births, first obling, an in ethnicity a nearest he n includes o conserve sce of 0 or compt that co	e interpo e interpo t births a udicator I nd religio alth facili district a space (s I to accos listrict for r Decent

source: Godlonton and Okeke (2015)

Tabl	e A.:	2
------	-------	---

Was there an offsetting effect of relative/friend-attended births?

	(1)	(2)
Variables	High travel costs	Low travel costs
Relative/friend-attended births	0.0430***	0.0267
	(0.0140)	(0.0190)
Child death within one week	-0.00244	0.00776
	(0.00499)	(0.00840)
Child death within one month	- 0.00403	0.00467
	(0.00659)	(0.00836)
N	(0.00659)	(0.00836)

Notes: the sample in Column 1 is women who answered 'yes' when asked whether distance was a 'big problem' in accessing medical services. The sample in Column 2 is women who answered 'no'. The estimates are from the regression specification in Column 5 of Tables 6 and 7. Standard errors in parentheses are clustered at the district level (there are 27 districts). $e^{+e} = c - 0.1$.

** p < 0.05.

* p < 0.1.

source: Godlonton and Okeke (2015)

	$E(X D_{1i} > D_{0i})$	E(X)	Relative likelihood
Male birth	0.509	0.500	0.9862
First birth	0.392	0.195	1.3172
Multiple pregnancy	0.067	0.043	1.3241
Young mother	0.493	0.116	1.4276
No maternal education	0.132	0.169	0.9862
No paternal education	0.052	0.108	0.6248
Has partner	0.812	0.869	0.9862
Poorest quintile	0.178	0.228	0.8345
Lives far from health facility	0.226	0.249	1.0483
Rural location	0.859	0.905	0.9448

are in Column 3. Details for how these are computed are in Section 6.5.2.

source: Godlonton and Okeke (2015)

source: Godlonton and Okeke (2015)

Economics 523 (Professor Jakiela) Diff-in-Diff with Panel Data, Slide 51

	Nearest health facility is in the top quartile of quality distribution					Nearest health facility is in the bottom three quartiles of quality distribution						
Variables High exposure × Post	Child death	Child death within the first week					Child deat	h within the	first week			
	-14.70**	-14.32*	- 12.59	-14.42	-13.12	- 12.84	-0.679	-0.333	2.491	2.377	5.432	1.653
	(6.725)	(7.100)	(8.439)	(8.651)	(9.448)	(8.425)	(4.418)	(4.586)	(4.633)	(4.656)	(5.253)	(4.420)
igh exposure	8.537*	10.96*	10.44*	10.61*	8.673		4.950	4.942	4.188	4.094	2.445	
	(4.738)	(5.745)	(6.006)	(5.969)	(6.034)		(3.185)	(3.470)	(3.489)	(3.549)	(4.092)	
758				-26.32	-47.46*	24.64				-29.31	-29.31	-44.60
				(15.79)	(24.46)	(46.70)				(22.08)	(26.48)	(27.03)
onstant	21.16***	-13.68	-17.15	66.70	103.3**	-4.514	30.46***	19.42	19.71	237.3***	296.6***	7.268
	(0.976)	(10.40)	(10.19)	(41.39)	(48.35)	(13.77)	(0.566)	(12.07)	(11.97)	(35.30)	(34.60)	(16.85)
bservations	8735	8570	8570	8570	4764	8570	25,666	25,178	25,178	25,178	17,553	25,178
-squared	0.015	0.023	0.027	0.017	0.023	0.053	0.007	0.012	0.013	0.009	0.010	0.039
	Child death	within the fi	st month				Child deat	h within the	first month	1		
igh exposure × Post	-17.33**	-17.02**	-16.00	- 17.73*	-12.76	-17.69*	-1.482	-1.899	1.340	1.459	2.604	-0.069
	(7.479)	(8.067)	(10.04)	(10.19)	(10.22)	(10.14)	(5.376)	(5.577)	(5.666)	(5.668)	(6.127)	(5.658)
igh exposure	9.091	11.65*	11.25	11.64	8.405		6.391	5.658	4.839	4.584	3.835	
	(5.670)	(6.633)	(7.109)	(7.070)	(6.658)		(3.934)	(4.172)	(4.254)	(4.288)	(4.869)	
sst				-33.89	-45.00*	60.43				-41.40	-62.67	-60.54
				(34.30)	(25.51)	(89.20)				(34.54)	(45.67)	(35.73)
onstant	31.91***	13.77	11.46	122.1**	125.2	29.74	36.17***	23.61	23.38	227.9***	351.2***	19.69
	(1.009)	(25.26)	(26.43)	(51.73)	(77.49)	(36.08)	(0.599)	(13.94)	(13.69)	(37.19)	(41.04)	(18.61)
ontrols	No	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes
ontrols \times Post	No	No	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes
istrict-specific trend	No	No	No	Yes	Yes	No	No	No	No	Yes	Yes	No
rimmed data	No	No	No	No	Yes	No	No	No	No	No	Yes	No
luster fixed effects	No	No	No	No	No	Yes	No	No	No	No	No	Yes
bservations	8735	8570	8570	8570	4764	8570	25,666	25,178	25,178	25,178	17,553	25,178
-squared	0.019	0.028	0.030	0.019	0.024	0.054	0.007	0.013	0.014	0.011	0.013	0.039
es: coefficients have be e (equal to one if the no	en scaled to all sarest health fa	low them to be cility is within	interpreted the top qua	as X per 1000 rtile of the qu	live births. Th ality distribut	e sample in P ion) while th	anel A (left) o e sample in F	consists of bir lanel B (right	ths to house) consists of	holds with a births to hou	ccess to high- useholds whe	quality fo ere the ne
Ith facility is in the bot	tom three qua	rtiles of the qu	uality distribu	ition. The dep	pendent varial	sles are show	in at the top	of each set o	f results. Cor	strols include	indicators fo	or male bit
births and young mot	hers (age < 18), dummies fo	r mother's le	el of schoolin	ng, an indicato	r for women	who are mai	ried or living	; with a part	ner, dummie	s for ethnicit	y and relig
nmies for the partner's	educational at	tainment, dist	ance to the n	earest health	facility, wealt	h quintile du	mmies, and a	i rural–urbar	n indicator. E	ach column i	includes dist	rict and ye
nth fixed effects. In Col	umn 5, we exc	lude villages v	with baseline	prevalence o	F0 or 1 to acc	ount for 'floo	r" and 'ceiling	f effects. Coli	umn 6 is equ	rivalent to Co	dumn 3 exce	pt that dis
d effects have been re	placed with d	luster fixed ef	fects, Post =	1 if birth oct	urs after Dec	ember 2007.	Standard en	ors in paren	theses are o	lustered at t	he district le	rvel (there
districts).												
n < 0.01												

source: Godlonton and Okeke (2015)

Continuous Variation in Treatment Intensity

Alternative regression specification (that Godlonton and Okeke don't use):

 $Y_{i,t} = \alpha + \gamma \left(\textit{PreMeanTBA}_{c} \times \textit{Post}_{t} \right) + \beta X_{ict} + \eta_{c} + \tau_{t} + \varepsilon_{ict}$

where:

- $PreMeanTBA_c =$ level of TBA use in cluster c before TBA ban
- $\gamma = \text{diff-in-diff}$ estimate of treatment effect
- X_{ict} = set of control variables (eg household size, etc.)
- $\eta_c = \text{fixed effect for DHS cluster } c$
- $\tau_t = \text{fixed effect for month of birth (eg January 2007)}$
- ε_{ict} = mean-zero error term

Example: Traditional Birth Attendants in Malawi

Example: Traditional Birth Attendants in Malawi

Example: Traditional Birth Attendants in Malawi

source: Duflo (2000)

Main empirical specification in Duflo (2001):

$$S_{ijk} = lpha + \eta_j + eta_k + \gamma \left(\textit{Intensity}_j * \textit{Young}_i \right) + C_j \delta + \varepsilon_{ijk}$$

where:

- S_{ijk} = education of individual *i* born in region *j* in year *k*
- $\eta_j = \text{region of birth fixed effect}$
- $\beta_k =$ year of birth fixed effect
- Young_i = dummy for being 6 or younger in 1974 (treatment group)
- Intensity_j = INPRES schools per thousand school-aged children
- C_j = a vector of region-specific controls (that change over time)

Dependent Variable: Years of Education

Dependent Va	nable. Te			
		OLS	OLS	OLS
	Obs.	(1)	(2)	(3)
Panel A: Entire Sample				
Intensity _j * Young _i	78,470	0.124	0.150	0.188
		(0.025)	(0.026)	(0.029)
Panel B: Sample of Wage Earne	ers			
Intensity _j * Young _i	31,061	0.196	0.199	0.259
		(0.042)	(0.043)	(0.050)
Controls Included:				
YOB*enrollment rate in 1971		No	Yes	Yes
YOB*other INPRES programs		No	No	Yes

Sample includes individuals aged 2 to 6 or 12 to 17 in 1974. All Specifications include region of birth dummies, year of birth dummies, and interactions between the year of birth dummis and the number of children in the region of birth (in 1971). Standard errors are in parentheses.

		OLS	OLS	OLS
	Obs.	(1)	(2)	(3)
Panel A: Sample of Wage Earne	ers			
Intensity _j * Young _i	31,061	0.0147	0.0172	0.027
		(0.007)	(0.007)	(0.008)
Controls Included:				
YOB*enrollment rate in 1971		No	Yes	Yes
YOB*other INPRES programs		No	No	Yes

Dependent Variable: Log Hourly Wages (as Adults)

Sample includes individuals aged 2 to 6 or 12 to 17 in 1974. All Specifications include region of birth dummies, year of birth dummies, and interactions between the year of birth dummis and the number of children in the region of birth (in 1971). Standard errors are in parentheses.

Testing Common Trends

How Can We Test the Common Trends Assumption?

The **common trends** assumption: in the absence of treatment, outcomes in the treatment (i.e. ever-treated) group and the comparison group would have evolved along similar trajectories

- Common trends relates to potential outcomes without treatment
 - ▶ We can never observe the (treatment group) counterfactual
- It is fundamentally impossible to test the common trends assumption

Approaches to defending (or perhaps evaluating) the common trends assumption:

- 1. Comparing pre-treatment trends in the treatment and comparison groups
- 2. Conducting a falsification test (sometimes called a placebo test)
- 3. Triple differences: identifying an additional comparison group within the treatment group

Pre-Trends: A Picture Is Worth a Thousand Words

source: Naritomi (2019)

Pre-Trends: A Picture Is Worth a Thousand Words

source: Godlonton and Okeke (2015)

Testing Pre-Trends in a Regression

Godlonton and Okeke (2015) test for differences in pre-treatment trends:

$$Y_{ict} = lpha + eta \mathsf{HighExposure}_{c} + \lambda \mathsf{Time}_{t} + \gamma (\mathsf{HighExposure}_{c} imes \mathsf{Time}_{t}) + arepsilon_{ict}$$

where:

- Y_{it} = outcome variable in cluster *i* at time *t*
- *HighExposure_c* = indicator for (eventually) treated clusters
- $Time_t = (linear)$ measure of months from start of data set
- $\gamma =$ measures equality of time trends between treatment, control
- ε_{it} = mean-zero error term

Sample is restricted to observations from before the ban on traditional birth attendants

Testing Pre-Trends in a Regression

Table 2 Test of parallel time trends				
	(1)	(2)	(3)	(4)
Variables	Birth attended by informal attendant	Birth attended by formal-sector provider	Child death within the first week	Child death within the first month
High exposure	0.566	-0.419	0.0402	0.0340
	(0.505)	(0.572)	(0.0439)	(0.0537)
Time trend	-0.000558	0.000560	- 5.75e-05	-0.000110*
	(0.000349)	(0.000442)	(4.30e-05)	(5.58e-05)
High exposure \times time	-0.000388	0.000175	— 6.52e-05	— 5.12e-05
trend	(0.000902)	(0.00102)	(8.21e-05)	(9.83e-05)
Constant	0.401*	0.459	0.0499**	0.0860***
	(0.195)	-0.247	(0.0230)	(0.0301)
Observations	9277	9277	25,696	25,696
R-squared	0.171	0.100	0.002	0.002

source: Godlonton and Okeke (2015)

Testing Pre-Trends: Implications for Practice

- A compelling test of the equality of pre-trends requires lots of pre-treatment data
 - At a minimum, you need two pre-treatment periods
 - Statistical power can be a serious issue with limited pre-treatment data
- Often makes sense to disaggregate data as much as possible (e.g. months instead of years)
 - Treatment and comparison groups should be impacted by the same period-specific shocks
- Whenever possible, graph your data and conduct a statistical (i.e. regression) test

Falsification (or Placebo) Tests

A placebo or **falsification test** looks for effects that shouldn't be there using:

- A different outcome (that should not be impacted)
- A different (i.e. not real) definition of treatment
- A different sample (i.e. one not impacted by treatment)

Unlike tests of pre-trends, falsification tests typically use the same diff-in-diff regression specifications as the main analysis (except for the one placebo element being tested)

Falsification Test Example 1: Alternative Outcomes

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Variables	Twin birth	Male birth	First birth	Young mother	Number of children ever born	Mother's age at first birth	Mother is Christian	No education (mother)	No educatio (spouse)
High exposure	0.0089 0.00578	0.00306 	- 0.0095 - 0.00854	- 0.000565 - 0.00758	0.237***	-0.00518 -0.113	0.0172 	0.0362***	0.0091
Post	0.00852	0.00697 	- 0.0209* - 0.0112	- 0.00985 - 0.00737	- 0.00716 - 0.0616	- 0.143 - 0.0949	- 0.00901 - 0.00953	0.0228*	0.0011
High exposure × Post	-0.00693 -0.00744	-0.00823 -0.0156	0.00431 - 0.0122	0.00415	- 0.0992 - 0.0713	- 0.0479 - 0.0641	- 0.00602 - 0.00817	- 0.0164 - 0.00994	0.0041
Constant	0.549*** -0.12	0.935*** -0.17	- 0.187 - 0.157	0.477*** - 0.104	17.16*** - 0.795	15.01***	0.868***	0.479***	-0.010
Observations	19,680	19,680	19,680	19,680	19,680	19,680	19,680	19,680	19,192
R-squared	0.009	0.003	0.005	0.008	0.03	0.021	0.355	0.068	0.039
	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
Variables	Unemployed	Household head is female	Household size	Household has bicycle	Household has electricity	Household has radio	Poorest wealth quintile	Rural location	Distance to nearest facil
High exposure	-0.0155 -0.0173	-0.00487 -0.014	0.00358 0.0679	0.0149 0.0246	- 0.0385*** - 0.00998	- 0.0479*** - 0.0113	0.0627*** - 0.0143	0.0580*** - 0.0159	2.067
Post	- 0.0227** - 0.00914	-0.0122 -0.0139	- 0.0784 - 0.0578	0.0122	- 0.000171 - 0.00514	- 0.0200*** - 0.00683	-0.0155	0.00227	-0.032 -0.1
High exposure × Post	-0.00356 -0.0116	0.00421 -0.0119	- 0.0965 - 0.0629	- 0.00849 - 0.0151	- 0.00296 - 0.00567	0.00277 0.00755	0.00149 - 0.0148	- 0.00327 - 0.00607	-0.014
Constant	-0.929*** -0.137	-0.259 -0.177	10.56*** - 0.765	1.737*** - 0.152	- 0.183*** - 0.0642	- 0.313*** - 0.0923	-0.431*** -0.134	0.971*** - 0.102	5.341
Observations	19,680	19,680	19,680	19,680	19,680	19,680	19,680	19,680	19,211
R-squared	0.086	0.022	0.028	0.043	0.062	0.046	0.053	0.192	0.242

source: Godlonton and Okeke (2015)

Falsification Test Example 2: Alternative Sample / Placebo Treatment

Economics 523 (Professor Jakiela) Diff-in-Diff with Panel Data, Slide 71

Falsification Test Example 2: Alternative Sample / Placebo Treatment

Developed Mariables, Maria of Education

Dependent van	able. Teal	s of Euuca		
		OLS	OLS	OLS
	Obs.	(1)	(2)	(3)
Panel A: Entire Sample				
Intensity _j * Younger _i	78,488	0.009	0.018	0.008
		(0.026)	(0.027)	(0.030)
Panel B: Sample of Wage Earn	ers			
Intensity _j * Younger _i	30,255	0.012	0.024	0.079
		(0.048)	(0.048)	(0.056)
Controls Included:				
YOB*enrollment rate in 1971		No	Yes	Yes
YOB*other INPRES programs		No	No	Yes

Sample includes individuals aged 12 to 24 in 1974. All Specifications include region of birth dummies, year of birth dummies, and interactions between the year of birth dummis and the number of children in the region of birth (in 1971). Standard errors are in parentheses.

Falsification Tests: Implications for Practice

Falsification tests are fundamentally context-specific:

- Which outcomes and/or groups should not be impacted?
 - Could there be spillovers onto groups that weren't directly treated?
 - Could treatment have unintended consequences?
 - Example: impacts of maternity leave on attitudes toward LGBTQ issues

There is not a one-size-fits-all approach to coming up with a good falsification test

• You need to know your setting and your data, and framing matters

Triple-Differences as a Test of Common Trends

	Child death				
Variables	(1)	(2)	(3)		
High exposure \times Post \times Treated	-1.320	-1.332	3.008		
	(3.518)	(3.474)	(3.468)		
High exposure \times Treated	4.093*	4.051*	2.060		
	(2.122)	(2.132)	(2.457)		
Treated \times Post	1.209	1.639	-2.541		
	(2.113)	(2.148)	(2.379)		
High exposure \times Post	-0.00819	0.0151	-0.502		
	(1.552)	(1.538)	(1.672)		
High exposure	-0.207	-0.252	-0.431		
	(1.062)	(1.061)	(1.102)		
Post		-9.929	-15.05		
		(7.668)	(8.550)		
Treated	0.548	0.261	-0.115		
	(8.593)	(8.499)	(8.792)		
Constant	6.118	59.99***	62.21**		
	(3.688)	(10.73)	(11.59)		
District-specific trend	No	Yes	Yes		
Trimmed data	No	No	Yes		
Observations	122,301	122,301	79,596		
R-squared	0.008	0.007	0.008		

Folds: Supposed by a super a climate data in type of r. a nas were states of a some connections to be interpreted by as X per 1000 the birth. For reds (seque) to 10 members and equal to 0 for children aged 2-5 years in year t. Each column includes district and year × month force of 10 set of controls and their interactions with Post and Terrent. In Column 3, we exclude vilages with baseline prevalence of 0 or 1 to account for floor and redshift exclusions are consulted vilages with baseline prevalence of 00 or 1 to account for floor and redshift exclusions are consulted vilages with baseline prevalence of 00 or 1 to account for floor and redshift exclusions are consulted vilages with baseline prevalence of 00 r. Ita data data derives in parentheses are clustered at the district level (there are 27 districts).

** p < 0.05.

* p < 0.1.

source: Godlonton and Okeke (2015)