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Linear regression is a technique for summarizing data as a linear equation, predicting

values of an outcome variable Y as a linear combination of independent variables X1, X2,

. . . , XK . When there are only two data points (or observations), there is only one line that

goes through both points – so the process of choosing the line is straightforward. With

more than two data points, we cannot usually choose a linear combination of X variables

that perfectly predicts all of the observations. In linear regression, we choose the line that

minimizes the residual sum of squares.

Consider a data set that contains N observations. For each observation, we have infor-

mation about outcome variable Y and K other variables, X1, X2, . . . , XK , that we will

use to predict Y . A linear equation

Y = β0 + β1X1 + β2X2 + . . .+ βKXK

assigns each independent variable Xk a scalar weight βk. β0 is the intercept in the equation

for the line, though we can also think of this term as the weight on an (implicit) variable

X0 which is a vector of ones. For any vector β = {β0, β1, β2, . . . , βK}, the predicted value

of Yi is:

Ŷi = β0 + β1Xi,1 + β2Xi,2 + . . .+ βKXi,K .

In most data sets with N > 2, there is no set of linear coefficients β0, β1, . . . , βK that

will fit the data perfectly. The residual is the gap between the predicted value of Yi and

the true, observed value of Yi, Yi − Ŷ . In linear regression, we choose the vector of linear

coefficients β that minimizes the residual sum of squares across all N observations.

Taking the partial derivatives of the residual sum of squares

RSS(β) =

N∑
i=1

(
Yi −

K∑
k=0

βkXi,k

)2

with respect to β0, β1, . . . , βK yields a system of K + 1 first-order conditions.1 Solving

this system of equations gives us unique, explicit analytical expressions characterizing the

linear regression coefficients as long as columns of X are not linearly dependent.

1Henceforth, we will assume that our linear model includes a constant term, β0, and thus that X is an
N × (K + 1) matrix that includes X0, a vector of ones, plus the K independent variables of interest, X1,
X2, . . . , XK . We will continue to write the regression equation as Ŷ = β0 + β1X1 + β2X2 + . . . + βKXK ,
omitting X0 – but it is implied.
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1.1 Regression on a Constant

The simplest possible regression is a regression of outcome Y on (only) a constant, X0

(i.e. a vector of ones). When we regress Y on a constant, we do not use any independent

variables that vary across observations, so the predicted value of Y is the same for all

observations:

Ŷi = β0.

We refer to the value of β0 that minimizes the sum of squared residuals (in the given data

set) as the estimated regression coefficient or β̂0. In this special case, the value of β̂0

that minimizes the sum of squared errors is the mean of Y , Ȳ .

Practice Problem 1 Show that when Ŷi = β0 and the regression includes only a constant,

β̂0 = Ȳ minimizes the residual sum of squares.

1.2 Dummy Variables

1.2.1 Regression on a Single Dummy Variable

Next, consider the case when we regress Y on a single dummy variable X1 plus a constant

X0. As Figure 1.2.1 illustrates, all the data points fall on one of the two possible values of

the dummy variable X1, 1 or 0. The regression line runs from the cluster of points on the

vertical line X1 = 0 to the cluster of points on the vertical line X1 = 1.

Figure 1: Bivariate Regression on a Dummy Variable (axis labels should be X and Y )
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For any possible regression line

Y = β0 + β1X1,

there are only two predicted values of Y that are of particular interest: the predicted value

for X1 = 0 and the predicted value for X1 = 1. When X1 = 0, the predicted Ŷ = β0; and

when X1 = 1, the predicted Ŷ = β0 + β1. The chosen regression line which minimizes the

residual sum of squares connects these two predicted values.

Key Result 1 The value of Ŷ that minimizes the residual sum of squares across all obser-

vations with X1 = 0 is the conditional mean of Y among observations with X1 = 0, which

we denote ȲX1=0, and the value of Ŷ that minimizes the residual sum of squares across all

observations with X1 = 1 is the conditional mean of Y among observations with X1 = 1,

which we denote ȲX1=1.

We can establish this formally by solving for the values of β̂0 and β̂1 that minimize the

residual sum of squares
N∑
i=1

(
Yi − β̂0 − β̂1Xi

)2
,

which yields β̂0 = ȲX=0 and β̂1 = ȲX=1 − ȲX=0.

Practice Problem 2 Demonstrate Key Result 1 by minimizing the residual sum of squares.

Practice Problem 3 Find the values of β̂0 and β̂1 that minimize the residual sum of

squares if X1 is either 1 or 2 (instead of being either 0 or 1).

1.3 Mutually Exclusive Dummy Variables

The same logic extends to the case when we regress Y on multiple mutually-exclusive

dummy variables, for example if we want to compare a control group to multiple distinct

treatments.

Consider the simple case where K = 2, so X contains two mutually exclusive dummy

variables X1 and X2. In this example, we are comparing three groups: a group of ob-

servations with X1 = X2 = 0, which we will refer to as the control group; a group with

X1 = 1 and X2 = 0; and a group with X1 = 0 and X2 = 1. The so-called control group

is particularly important: if there were not some observations with X1 = X2 = 0, the sum

of X1 and X2 would be colinear with X0, the implicit vector of ones associated with the

constant, and there would not be a unique solution for the regression coefficients β̂0, β̂1,

and β̂2.
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We want to fit the regression

Y = β0 + β1X1 + β2X2.

As in the bivariate regression case discussed above, there are only a few predicted values

of Y that are of interest, since X1 and X2 are dummies and they are never both equal

to 1. The predicted Ŷ when X1 and X2 are both zero is β̂0, and when we minimize the

residual sum of squares β̂0 will be equal to the average value of Y among observations with

X1 = X2 = 0, which we denote ȲX1=X2=0. The predicted Ŷ when X1 = 1 and X2 = 0

is β̂0 + β̂1, and β̂1 = ȲX1=1,X2=0 − ȲX1=X2=0, the difference between the average value

of Y among observations with X1 = 1 (and X2 = 0) and the average value of Y among

observations with X1 = X2 = 0. Similarly, β̂2 = ȲX1=0,X2=1 − ȲX1=X2=0.

Key Result 2 Let X1, X2, . . . , XK be a set of mutually exclusive dummy variables, and

assume that their exists some subset of observations with Xk = 0 for all k. When we regress

outcome Y on X1, X2, . . . , XK plus a constant, estimating the equation

Y = β0 + β1X1 + β2X2 + . . .+ βKXK ,

β̂0 = ȲXk=0, the mean of Y among observations with all of the dummy variables equal to

0, and for k = 1, . . .K, β̂k = ȲXk=1 − ȲXk=0.

Practice Problem 4 Consider two regressions: the regression of Y on mutually exclusive

dummies X1 and X2 that we discussed above and a bivariate regression of Y on Z = X1+X2.

Assume both regressions also include a constant. Let β̂Z denote the coefficient on Z from

the second regression. Using Key Results 1 and 2, show that

β̂Z =

(
NX1=1

NX1=1 +NX2=1

)
β̂1 +

(
NX2=1

NX1=1 +NX2=1

)
β̂2

where β̂1 and β̂2 are the coefficients on X1 and X2 in the first regression and NX1=1 and

NX2=1 are, respectively, the numbers of observations with X1 = 1 and X2 = 1. In other

words, show that β̂Z is a weighted average of the regression coefficients from the multivariate

regression, where the weights are proportional to the sample size of the treatment arms.

1.3.1 Fixed Effects

We often include a set of mutually exclusive dummy variables as a way of removing varia-

tion that is attributable to some categorical variable – for example, location (e.g. state of
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residence), time period, or demographic group. We refer to such dummies as fixed effects.2

We do this by including mutually exclusive dummies for all but one of the observed values

of the categorical variable.3 The constant is equal to the mean in the omitted category, and

the other coefficients on the fixed effects dummies capture the difference in the mean of Y

between the group represented by a particular dummy and the omitted category. As we

discuss below, we typically include fixed effects as controls, and in such cases the estimated

regression coefficients may not be of interest in their own right, so it does not matter which

value of the categorical variable is chosen as the omitted category.

1.4 Interactions Between Dummy Variables

Practice Problem 5 Suppose K = 2 but X1 and X2 are not mutually exclusive: assume

X2 = 1 ⇒ X2 = 1, but not vice versa. Thus, there are three distinct types of observations

in the sample: those with X1 = X2 = 0, those with X1 = 1 and X2 = 0, and those with

X1 = X2 = 1. Consider two regressions. The first is a regression of Y on X1 and X2:

Y = β0 + β1X1 + β2X2.

The second is a regression of Y on Y on Z1 and Z2:

Y = γ0 + γ1Z1 + γ2Z2

where Z1 = X1(1 −X2) and Z2 = X1 ×X2. Characterize the relationship between β̂1, β̂2,

γ̂1, and γ̂2.

2 One Continuous Independent Variable

When we fit a bivariate linear regression

Y = β0 + β1X1,

2It is not entirely clear whether the term fixed effects refers to the set of mutually exclusive dummies
representing all but one of the values of a categorical variable or the regression coefficients associated with
such a set of dummy variables.

3As discussed above, we cannot include a dummy for all of the observed values of the categorical variable
of interest – because then every observation would have one of the relevant dummies equal to one, so the sum
of all the dummies would always be one and hence equal to X0. When independent variables are colinear
in this way, unique values for the regression coefficients cannot be calculated. To address this, we typically
include fixed effects for all but one of the observed values of the categorical variable that we wish to control
for, though one could also omit the constant term and include dummies for all of the observed values.
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we choose the values of β̂0 and β̂0 that minimize the residual sum of squares,

N∑
i=1

(
Yi − β̂0 − β̂1Xi,1

)2
.

Taking the partial derivatives of this expression with respect to β0 and β0 and solving the

resulting first-order conditions yields an explicit expression for β̂1,

β̂1 =

∑N
i=1Xi,1

(
Yi − Ȳ

)∑N
i=1Xi,1

(
Xi,1 − X̄1

) ,
which is equivalent to

COV (Yi, Xi,1)

V AR (Xi,1)
,

and ∑N
i=1 Yi

(
Xi,1 − X̄1

)∑N
i=1Xi,1

(
Xi,1 − X̄1

) ,
and

N∑
i=1

wiYi

where wi =
(
Xi,1 − X̄1

)
/VX and VX =

∑N
i=1Xi,1

(
Xi,1 − X̄1

)
. These last two formulations

emphasize a particularly important fact: the bivariate regression coefficient is a linear

combination of the observed values of Y , and the weights in the linear combination are

proportional to Xi,1 − X̄1, the deviations from the mean of X1. Observations with above-

mean values of X1 receive positive weight while those with below-mean X1 values receive

negative weight. Any observation with X1 equal to the sample mean receives zero weight

in the calculation of the regression coefficient, β̂1.

3 Multivariate Regression

Now, we consider the more general case where we want to estimate a regression of Y on

X1, X2, . . . , XK , fitting the line:

Y = β0 + β1X1 + β2X2 + . . .+ βKXK .

There is probably more to say here.
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3.1 Adding Fixed Effects

As discussed above, fixed effects control for differences in Y across the observed values of a

categorical variable – for example, geographic region or year of birth. Consider a regression

of Y on X that also includes fixed effects Z1, Z2, . . . , ZM representing all but one of the

M+1 observed values of some categorical variable. Letm = 0, 1, . . . ,M index the categories

defined by the categorical variable: m = 0 for observations with Z1 = Z2 = . . . = ZM = 0,

and for m = 1, . . . ,M the category m refers to the observations with Zm = 1 and Z ̸=m = 0.

When we regress Y on only the fixed effects, we have seen that the regression coefficient

γ̂m captures the difference in the mean of Y between the group of observations with Zm = 1

(category m) and the group chosen as the omitted category (category 0). Fixed effects

function in a similar way in a multivariate regression, but they capture the difference in

the mean of Y after controlling for X (in a way that we make precise below).

We are often more interested in understanding how the coefficient on X1 changes with

the inclusion of fixed effects that in the fixed effects coefficients themselves. When we

include fixed effects for the observed values of a categorical variable, that is equivalent to

subtracting off category-specific means of both Y and X. For m = 0, 1, . . . ,M , let Ȳm and

X̄m denote the means of Y and X, respectively, in category m. The fixed effects regression

of Y on X and dummy variables Z1, Z2, . . . , ZM ,

Y = β0 + β1X1 + γ1Z1 + . . .+ γMZM ,

yields the same estimate of β̂1 as a bivariate regression of Ỹ on X̃ where

Ỹi = Yi − Ȳm

and

X̃i = Yi − X̄m.

The standard error of β̂1 is also mechanically equal across the two regressions.

We will sometimes refer to Ỹ and X̃ as normalized values of Y and X. We can also

refer to them as residualized values of Y and X. The reason for this is that Ỹ and X̃ are

the residuals from regressions of Y and X on the set of fixed effects, Z1, Z2, . . . , ZM (plus

a constant). There are, therefore, three equivalent approaches to calculating β̂1:

1. Regress Y on X while including fixed effects Z1, Z2, . . . , ZM ;

2. Regress Y and X on the fixed effects Z1, . . . , ZM and define Ỹ and X̃ as the residuals

from those regressions, and then regress Ỹ and X̃; or
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3. Calculate category-specific means, construct normalized variables Ỹ and X̃ by sub-

tracting of the category-specific means, and then regress Ỹ and X̃.

3.1.1 When X Is a Dummy Variable

3.2 The Frisch-Waugh-Lovell Theorem

The Frisch-Waugh-Lovell Theorem states that the coefficient β̂1 from the regression

Y = β0 + β1X1 + γ1Z1 + . . .+ γMZM ,

is equal to the coefficient on X̃ from a regression of Ỹ and X̃ where Ỹ and X̃ are the

residuals from regressions of Y and X on Z1, . . . , ZM . Thus, the relationship between

the first and second approaches to estimating the coefficient on X in a regression including

fixed effects (described above) is not specific to the case where Z1, . . . , ZM are dummy

variables. This is, instead, a direct result of the application of the Frisch-Waugh-Lovell

theorem to the case where all but one of the variables are dummies.
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