1 Notes on Regression Analysis

Updated February 11, 2026.

Linear regression is a technique for summarizing data as a linear equation, predicting
values of an outcome variable Y as a linear combination of independent variables X7, Xs,
..., Xk. When there are only two data points (or observations), there is only one line that
goes through both points — so the process of choosing the line is straightforward. With
more than two data points, we cannot usually choose a linear combination of X variables
that perfectly predicts all of the observations. In linear regression, we choose the line that
minimizes the residual sum of squares.

Consider a data set that contains N observations. For each observation, we have infor-
mation about outcome variable Y and K other variables, X7, Xs, ..., Xk, that we will

use to predict Y. A linear equation
Y =060+ 01 X1+ BoXo+ ...+ B XK

assigns each independent variable X a scalar weight 5. (5o is the intercept in the equation
for the line, though we can also think of this term as the weight on an (implicit) variable
X which is a vector of ones. For any vector 8 = {5, 1, B2, - - ., Bk }, the predicted value
of Y; is:

Yi=PB0+MXi1+ BoXia+ ... + Br Xi K-

In most data sets with N > 2, there is no set of linear coefficients 5y, 1, ..., Bk that
will fit the data perfectly. The residual is the gap between the predicted value of Y; and
the true, observed value of Y;, Y; — Y. In linear regression, we choose the vector of linear
coefficients [ that minimizes the residual sum of squares across all N observations.

Taking the partial derivatives of the residual sum of squares

N K 2
RSS(B) = Z (1/2 - ZB}JQ,}:)

=1 k=0

with respect to By, 51, ..., Bi yields a system of K + 1 first-order conditionsE Solving
this system of equations gives us unique, explicit analytical expressions characterizing the

linear regression coefficients as long as columns of X are not linearly dependent.

!Henceforth, we will assume that our linear model includes a constant term, o, and thus that X is an
N x (K + 1) matrix that includes Xy, a vector of ones, plus the K independent variables of interest, X,
Xa, ..., XK. We will continue to write the regression equation as Y = Bo+ b1 X1+ B2 X2+ ...+ Bx Xk,
omitting Xo — but it is implied.



1.1 Regression on a Constant

The simplest possible regression is a regression of outcome Y on (only) a constant, X,
(i.e. a vector of ones). When we regress Y on a constant, we do not use any independent
variables that vary across observations, so the predicted value of Y is the same for all

observations:

Y; = Bo.

We refer to the value of fy that minimizes the sum of squared residuals (in the given data
set) as the estimated regression coefficient or BO. In this special case, the value of Bo

that minimizes the sum of squared errors is the mean of Y, Y.

Practice Problem 1 Show that when Y; = By and the regression includes only a constant,

Bo =Y minimizes the residual sum of squares.

1.2 Dummy Variables
1.2.1 Regression on a Single Dummy Variable

Next, consider the case when we regress Y on a single dummy variable X7 plus a constant
Xo. As Figure illustrates, all the data points fall on one of the two possible values of
the dummy variable X7, 1 or 0. The regression line runs from the cluster of points on the

vertical line X7 = 0 to the cluster of points on the vertical line X7 = 1.

Figure 1: Bivariate Regression on a Dummy Variable (axis labels should be X and Y)




For any possible regression line
Y = Bo + b1 X1,

there are only two predicted values of Y that are of particular interest: the predicted value
for X7 = 0 and the predicted value for X; = 1. When X; = 0, the predicted Y = Bo; and
when X; = 1, the predicted Y = Bo + B1. The chosen regression line which minimizes the

residual sum of squares connects these two predicted values.

Key Result 1 The value off/ that minimizes the residual sum of squares across all obser-
vations with X1 = 0 is the conditional mean of Y among observations with X1 = 0, which
we denote Yx,—q, and the value on that minimizes the residual sum of squares across all
observations with X1 = 1 is the conditional mean of Y among observations with X1 = 1,

which we denote YX1:1-

We can establish this formally by solving for the values of By and 3 that minimize the

residual sum of squares
N

Z (Yz — Bo —Ble‘)27

i=1

which yields /30 = ?X:O and Bl = YX:1 - YX:().
Practice Problem 2 Demonstrate Key Result 1 by minimizing the residual sum of squares.

Practice Problem 3 Find the values of BO and By that minimize the residual sum of

squares if Xy is either 1 or 2 (instead of being either 0 or 1).

1.3 Mutually Exclusive Dummy Variables

The same logic extends to the case when we regress Y on multiple mutually-exclusive
dummy variables, for example if we want to compare a control group to multiple distinct
treatments.

Consider the simple case where K = 2, so X contains two mutually exclusive dummy
variables X7 and Xs. In this example, we are comparing three groups: a group of ob-
servations with X; = X5 = 0, which we will refer to as the control group; a group with
X1 =1 and X2 = 0; and a group with X; = 0 and X5 = 1. The so-called control group
is particularly important: if there were not some observations with X; = X5 = 0, the sum
of X7 and X5 would be colinear with X, the implicit vector of ones associated with the

constant, and there would not be a unique solution for the regression coefficients Bg, Bl,
and Bg.



We want to fit the regression
Y = fo + 651X1 + B2 Xo.

As in the bivariate regression case discussed above, there are only a few predicted values
of Y that are of interest, since X; and X5 are dummies and they are never both equal
to 1. The predicted Y when X; and X» are both zero is BO, and when we minimize the
residual sum of squares BO will be equal to the average value of Y among observations with
X1 = X9 = 0, which we denote YX1:X2:O- The predicted Y when Xi=1and X9 =0
is ﬁo + ﬁAl, and ,31 = YX1=1, Xo=0 — YX,=X,—0, the difference between the average value
of Y among observations with X; = 1 (and X5 = 0) and the average value of Y among

observations with Xy = X9 = 0. Similarly, 52 = YX1:O,X2:1 — Yx,=X,=0-

Key Result 2 Let X1, Xo, ..., Xk be a set of mutually exclusive dummy variables, and
assume that their exists some subset of observations with Xy = 0 for all k. When we regress

outcome Y on X1, Xo, ..., Xk plus a constant, estimating the equation
Y =00+ 5X1+ B Xo+ ...+ B Xk,

ﬁo = Yxkzo, the mean of Y among observations with all of the dummy variables equal to
0, and fork=1,...K, 3, = Yx,=1 — Yx,—o0-

Practice Problem 4 Consider two regressions: the regression of Y on mutually exclusive
dummies X1 and Xo that we discussed above and a bivariate regression of Y on Z = X1+ Xo.
Assume both regressions also include a constant. Let BZ denote the coefficient on Z from

the second regression. Using Key Results 1 and 2, show that

5 Nx, — N Ny, _ R
6z=< = )61+< et )62
NX1:1 + NX2:1 NX1:1 + NX2:1

where 31 and 32 are the coefficients on X1 and Xy in the first regression and Nx,—1 and

Nx,—1 are, respectively, the numbers of observations with X1 = 1 and Xo = 1. In other
words, show that B 7 1s a weighted average of the regression coefficients from the multivariate

regression, where the weights are proportional to the sample size of the treatment arms.

1.3.1 Fixed Effects

We often include a set of mutually exclusive dummy variables as a way of removing varia-

tion that is attributable to some categorical variable — for example, location (e.g. state of



residence), time period, or demographic group. We refer to such dummies as fixed effectsﬂ
We do this by including mutually exclusive dummies for all but one of the observed values
of the categorical Variableﬁ The constant is equal to the mean in the omitted category, and
the other coefficients on the fixed effects dummies capture the difference in the mean of Y
between the group represented by a particular dummy and the omitted category. As we
discuss below, we typically include fixed effects as controls, and in such cases the estimated
regression coefficients may not be of interest in their own right, so it does not matter which

value of the categorical variable is chosen as the omitted category.

1.4 Interactions Between Dummy Variables

Practice Problem 5 Suppose K = 2 but X1 and X9 are not mutually exclusive: assume
Xo =1= X9 =1, but not vice versa. Thus, there are three distinct types of observations
in the sample: those with X1 = Xg = 0, those with X1 = 1 and X9 = 0, and those with

X1 = X9 = 1. Consider two regressions. The first is a regression of Y on X1 and Xo:
Y = o+ 81X1 + f2Xo.

The second is a regression of Y on'Y on Zy and Zy:
Y =9 +m2Z1 + 7222

where Z1 = X1(1 — X3) and Zy = X1 x Xo. Characterize the relationship between Bi, Ba,
;YI: and ’72-

2 One Continuous Independent Variable

When we fit a bivariate linear regression

Y = By + p1X1,

2It is not entirely clear whether the term fixed effects refers to the set of mutually exclusive dummies
representing all but one of the values of a categorical variable or the regression coefficients associated with
such a set of dummy variables.

3 As discussed above, we cannot include a dummy for all of the observed values of the categorical variable
of interest — because then every observation would have one of the relevant dummies equal to one, so the sum
of all the dummies would always be one and hence equal to Xo. When independent variables are colinear
in this way, unique values for the regression coefficients cannot be calculated. To address this, we typically
include fixed effects for all but one of the observed values of the categorical variable that we wish to control
for, though one could also omit the constant term and include dummies for all of the observed values.




we choose the values of Bo and Bo that minimize the residual sum of squares,

N

Z (Yz —Bo — BlXi,l)Q-

i=1
Taking the partial derivatives of this expression with respect to Sy and 5y and solving the
resulting first-order conditions yields an explicit expression for Bl,
5 Zi\il Xia (Yz — Y)
1= =
Sty Xig (Xin = X1)

which is equivalent to
COoV (Y;, Xi1)

VAR (X;1) ’
and
Zivzl Yi (Xz}l - Xl)
SN X (Xig - X1)
and

N
> Y
i=1

where w; = (Xi’l - Xl) /Vx and Vx = Zf\il Xi1 (Xi,l - Xl). These last two formulations
emphasize a particularly important fact: the bivariate regression coefficient is a linear
combination of the observed values of Y, and the weights in the linear combination are
proportional to X1 — X1, the deviations from the mean of X;. Observations with above-
mean values of X7 receive positive weight while those with below-mean X; values receive
negative weight. Any observation with X; equal to the sample mean receives zero weight

in the calculation of the regression coefficient, Bl-

3 Multivariate Regression

Now, we consider the more general case where we want to estimate a regression of Y on
X1, Xo, ..., Xk, fitting the line:

Y =080+ i1 X1+ BoXo+ ...+ B XK.

There is probably more to say here.



3.1 Adding Fixed Effects

As discussed above, fixed effects control for differences in Y across the observed values of a
categorical variable — for example, geographic region or year of birth. Consider a regression
of Y on X that also includes fixed effects Z1, Zo, ..., Zys representing all but one of the
M +1 observed values of some categorical variable. Let m = 0,1, ..., M index the categories
defined by the categorical variable: m = 0 for observations with Z; = Zs = ... = Z3; = 0,
and for m = 1,..., M the category m refers to the observations with Z,,, = 1 and Z,, = 0.

When we regress Y on only the fixed effects, we have seen that the regression coefficient
Am captures the difference in the mean of Y between the group of observations with Z,, = 1
(category m) and the group chosen as the omitted category (category 0). Fixed effects
function in a similar way in a multivariate regression, but they capture the difference in
the mean of Y after controlling for X (in a way that we make precise below).

We are often more interested in understanding how the coefficient on X changes with
the inclusion of fixed effects that in the fixed effects coefficients themselves. When we
include fixed effects for the observed values of a categorical variable, that is equivalent to
subtracting off category-specific means of both Y and X. For m =0,1,..., M, let Y;, and
X, denote the means of Y and X, respectively, in category m. The fixed effects regression

of Y on X and dummy variables Z1, Zs, ..., Zy,
Y=03+b5X1i+mZ1+...+mZum,

yields the same estimate of Bl as a bivariate regression of Y on X where

Yi=Yi—Yn

and
X, =Y — X,

The standard error of Bl is also mechanically equal across the two regressions.

We will sometimes refer to Y and X as normalized values of Y and X. We can also
refer to them as residualized values of Y and X. The reason for this is that Y and X are
the residuals from regressions of Y and X on the set of fixed effects, Z1, Za, ..., Zp (plus

a constant). There are, therefore, three equivalent approaches to calculating Blz
1. Regress Y on X while including fixed effects Z1, Zs, ..., Zp;

2. Regress Y and X on the fixed effects Z1, ..., Zp; and define Y and X as the residuals

from those regressions, and then regress Y and X; or



3. Calculate category-specific means, construct normalized variables Y and X by sub-

tracting of the category-specific means, and then regress Y and X.
3.1.1 When X Is a Dummy Variable

3.2 The Frisch-Waugh-Lovell Theorem

The Frisch-Waugh-Lovell Theorem states that the coefficient Bl from the regression
Y=00+5X1+mZ1+...+vuZum,

is equal to the coefficient on X from a regression of ¥ and X where Y and X are the
residuals from regressions of Y and X on Zy, ..., Zy;. Thus, the relationship between
the first and second approaches to estimating the coefficient on X in a regression including
fixed effects (described above) is not specific to the case where Zj, ..., Zj; are dummy
variables. This is, instead, a direct result of the application of the Frisch-Waugh-Lovell

theorem to the case where all but one of the variables are dummies.
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