Williams College ECON 379:

Program Evaluation for International Development

Module 8: Impacts of Treatment-on-the-Treated

Professor: Pamela Jakiela

noto: Daniella Van Leggelo-Padilla / World Bank

How High Is Program Take-Up?

Even "free" programs costly for participants, take-up often low

Intervention	Take-Up	Source
Business training	65%	McKenzie & Woodruff (2013)
Deworming medication	75%	Kremer & Miguel (2007)
Microfinance	13% - 31%	JPAL & IPA (2015)

Only people who do a program can be impacted by the program*

⇒ Might like to know how much program impacted participants (depending on our notion of treatment)

*Some restrictions apply

A Thought Experiment

Questions:

- What was average outcome among those who did the program?
- What does this suggest about the impact of treatment?

True model when outcomes impacted by program participation (P_i) :

$$Y_i = \alpha + \beta \mathbf{P}_i + \varepsilon_i$$

- Program take-up is endogenous conditional on treatment
- Only those assigned to treatment $(T_i = 1)$ are eligible
- Not everyone participates: $E[P_i | T_i = 1] = \lambda < 1$

True model when outcomes impacted by program participation (P_i) :

$$Y_i = \alpha + \beta \mathbf{P}_i + \varepsilon_i$$

- Program take-up is endogenous conditional on treatment
- Only those assigned to treatment $(T_i = 1)$ are eligible
- Not everyone participates: $E[P_i|T_i = 1] = \lambda < 1$

What do we get from standard regression specification:

$$Y_i = \alpha + \beta T_i + \varepsilon_i$$

Modifying our standard OLS equation, we get:

$$\hat{\beta} = E[Y_i | T_i = 1] - E[Y_i | T_i = 0]$$

$$= \alpha + \beta E[P_i | T_i = 1] + \varepsilon_i - (\alpha + \beta E[P_i | T_i = 0] + \varepsilon_i)$$

$$= \beta E[P_i | T_i = 1]$$

$$= \beta \lambda$$

where $\lambda < 1$ is the take-up rate in the treatment group

 \Rightarrow Low compliance scales down the estimated treatment effect

Economics 379 (Professor Jakiela) Impacts of Treatment-on-the-Treated, Slide 7

ATE =
$$\beta \lambda$$

$$ATE = \beta \lambda$$
impact of treatment
(on those who participate)

$$ATE = \beta\lambda$$
$$\beta = ATE/\lambda$$
$$\uparrow$$
impact of treatment on the treated

The treatment on the treated (TOT) estimator:

$$\hat{\beta}_{tot} = \frac{E[Y_i|T_i = 1] - E[Y_i|T_i = 0]}{E[P_i|T_i = 1] - E[P_i|T_i = 0]}$$

TOT scales up ITT effect to reflect imperfect take-up

- Assumption: treatment only works through program take-up
 - Not always obvious whether this is true

Two regressions:

Impact of assignment to treatment on outcome of interest:

 $Y_i = \alpha_2 + \beta_1 T_i + \nu_i$ [intent-to-treat]

Impact of assignment to treatment on program participation:

$$P_i = \alpha_2 + \beta_2 T_i + \nu_i$$
 [first stage]

Two regressions:

Impact of assignment to treatment on outcome of interest:

 $Y_i = \alpha_2 + \beta_1 T_i + \nu_i$ [intent-to-treat]

Impact of assignment to treatment on program participation:

$$P_i = \alpha_2 + \beta_2 T_i + \nu_i$$
 [first stage]

Impact of treatment on the treated: $\beta_{tot} = \beta_{itt}/\beta_{fs}$

Estimated via two-stage least squares (2SLS):

 $Y_i = \alpha_1 + \beta_{IV} \hat{P}_i + \varepsilon_i$ [IV regression]

 $P_i = \alpha_2 + \beta_2 T_i + \nu_i$ [first stage]

Easy to implement using Stata's ivregress 2sls command

• Running two (separate) regressions yields wrong standard error

. ivregress 2sls y somecontrol (program=treatment)

Instrumental	variables	(2SLS)	regression	Number of obs	=	1,000
				Wald chi2(2)	=	319.38
				Prob > chi2	=	0.0000
				R-squared	=	0.3221
				Root MSE	=	.95997

У	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
program	1.128383	.1214279	9.29	0.000	.8903883	1.366377
somecontrol	.9268132	.060714	15.27	0.000	.807816	1.04581
_cons	.0277227	.0525798	0.53	0.598	0753319	.1307773

Instrumented: program

Instruments: somecontrol treatment

. ivregress 2sls y somecontrol (program=treatment)

Instrumental	variables	(2SLS)	regression	Number of obs	=	1,000
				Wald chi2(2)	=	319.38
				Prob > chi2	=	0.0000
				R-squared	=	0.3221
				Root MSE	=	.95997

У	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
program	1.128383	.1214279	9.29	0.000	.8903883	1.366377
somecontrol	.9268132	.060714	15.27	0.000	.807816	1.04581
_cons	.0277227	.0525798	0.53	0.598	0753319	.1307773

Instrumented: program

Instruments: somecontrol treatment

. ivregress 2s	ls y somecon [.]	trol (progra	m=treatm	ent)			
Instrumental v	ariables (25	LS) regressi	on	Numbe Wald	r of obs	5 =	1,000
				Prob	\rightarrow chi2	_	0.0000
				R-squ	ared	=	0.3221
				Root	MSE	=	.95997
У	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
program somecontrol	1.128383	.1214279	9.29 15.27	0.000	. 8903	3883 7816	1.366377

0.53

0.598

.0525798

Instrumented: program Instruments: somecontrol treatment

.0277227

_cons

-.0753319

.1307773

. ivregress 2sls y somecontrol (program=treatment)

Instrumental	variables	(2SLS)	regression	Number of obs	=	1,000
				Wald chi2(2)	=	319.38
				Prob > chi2	=	0.0000
				R-squared	=	0.3221
				Root MSE	=	.95997

У	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
program somecontrol	1.128383 .9268132	.1214279 .060714	9.29 15.27	0.000 0.000	.8903883 .807816	1.366377 1.04581
_cons	.0277227	.0525798	0.53	0.598	0753319	.1307773

Instrumented: program

Instruments: somecontrol treatment

Assumptions Required for IV Estimation of TOT Effect

- 1. Instrument is exogenous (OK in an RCT)
- 2. Instrument is correlated with treatment (first stage)
- 3. Only impacts outcomes through take-up (exclusion restriction)
- 4. Monotonicity (optional requirement)
 - Not required if treatment effects are homogeneous

What Does Treatment on the Treated Measure?

TOT estimates local average treatment effect (LATE) on compliers

- Monotonicity assumption: there are no defiers
- We can't estimate impacts on **always takers** and **never takers** because their treatment status doesn't change take-up decision