Williams College ECON 379: Program Evaluation for International Development

TOPTANK

photo: Flore de Preneuf / World Bank

Williams College ECON 379:

Program Evaluation for International Development

Module 6: Diff-in-Diff in Panel Data

Professor: Pamela Jakiela

hoto: Daniella Van Leggelo-Padilla / World Bank

Testing Common Trends

The Common Trends Assumption

Diff-in-diff does not identify treatment effect if treatment and comparison groups were on different trajectories pre-program

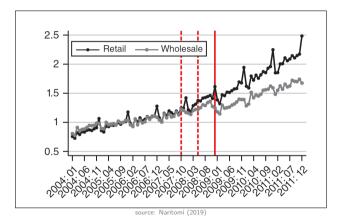
• This is the **common trends** assumption

Remember the assumptions underlying diff-in-diff estimation:

- Selection bias relates to fixed characteristics of individuals (γ_i)
- Time trend (λ_t) same for treatment and control groups

These assumptions guarantee that the common trends assumption is satisfied, but they cannot be tested directly — we have to trust

• As with any identification strategy, important to think carefully about whether it checks out intuitively and econometrically


How Can We Test the Common Trends Assumption?

A few approaches:

- $1. \ {\sf A} \ {\sf compelling \ graph: were \ trends \ similar \ pre-program?}$
- 2. Test equality if (linear) pre-program trends in outcome variables
- 3. A placebo experiment (or falsification test)

Not possible with only two periods of data

Approach #1: A Compelling Graph

Approach #2: Testing Common Trends in a Regression

Godlonton and Okeke (2015) test for differences in pre-treatment trends:

 $Y_{ict} = \alpha + \beta \textit{HighExposure}_{c} + \lambda \textit{Time}_{t} + \gamma \textit{HighExposure}_{c} \times \textit{Time}_{t} + \varepsilon_{ict}$

where:

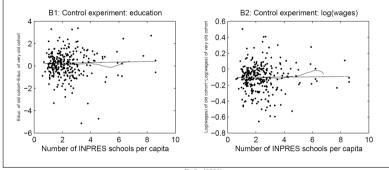
- Y_{it} = outcome variable in cluster *i* at time *t*
- *HighExposure_c* = indicator for (eventually) treated clusters
- $Time_t = (linear)$ measure of months from start of data set
- $\gamma =$ measures equality of time trends between treatment, control
- ε_{it} = mean-zero error term

Approach #2: Testing Common Trends in a Regression

	(1)	(2)	(3)	(4)
Variables	Birth attended by informal attendant	Birth attended by formal-sector provider	Child death within the first week	Child death within the first month
High exposure	0.566	-0.419	0.0402	0.0340
	(0.505)	(0.572)	(0.0439)	(0.0537)
Time trend	-0.000558	0.000560	-5.75e-05	-0.000110*
	(0.000349)	(0.000442)	(4.30e-05)	(5.58e-05)
High exposure × time	-0.000388	0.000175	-6.52e-05	- 5.12e-05
trend	(0.000902)	(0.00102)	(8.21e-05)	(9.83e-05)
Constant	0.401*	0.459	0.0499**	0.0860***
	(0.195)	-0.247	(0.0230)	(0.0301)
Observations	9277	9277	25,696	25,696
R-squared	0.171	0.100	0.002	0.002
totes: sample is all births HS collects data on type ars but collects mortalit and 4 (we restrict the sam mentheses are clustered * $p < 0.01$. * $p < 0.05$.	e of birth atten y data for all bi nple to all birth	dant for only bir rths hence the la is within the last	hs within the ger sample si ten years). St	e preceding fi ze in Column

source: Godlonton and Okeke (2015)

A placebo or falsification test looks for effects that shouldn't be


- In Malawi: test whether *HighExposure_c* × *Post_t* predicts outcomes not impacted by ban on traditional birth attendants
- In Indonesia: test whether more schools predicts increases in educational attainment, income among (much) older cohorts

Approach #3: A Falsification Test

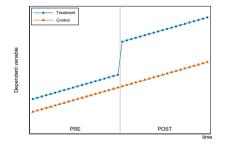
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Variables	Twin birth	Male birth	First birth	Young mother	Number of children ever born	Mother's age at first birth	Mother is Christian	No education (mother)	No education (spouse)
High exposure	0.0089	0.00306	- 0.0095	- 0.000565	0.237***	-0.00518	0.0172	0.0362***	0.0091
	-0.00578	-0.0122	-0.00854	-0.00758	-0.07	-0.113	-0.015	-0.0113	-0.0088
Post	0.00852	0.00697	-0.0209*	-0.00985	-0.00716	-0.143	-0.00901	0.0228*	0.0011
	-0.00858	-0.0134	-0.0112	-0.00737	-0.0616	-0.0949	-0.00953	-0.0123	-0.0090
High exposure × Post	-0.00693	-0.00823	0.00431	0.00415	-0.0992	-0.0479	-0.00602	-0.0164	0.0041
	-0.00744	-0.0156	-0.0122	-0.00865	-0.0713	-0.0641	-0.00817	-0.00994	-0.0084
Constant	0.549***	0.935***	-0.187	0.477***	17.16***	15.01***	0.868***	0.479***	-0.0109
	-0.12	-0.17	-0.157	-0.104	-0.795	-1.294	-0.121	-0.163	-0.121
Observations	19,680	19,680	19,680	19,680	19,680	19,680	19,680	19,680	19,192
R-squared	0.009	0.003	0.005	0.008	0.03	0.021	0.355	0.068	0.039
	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
Variables	Unemployed	Household head	Household	Household has	Household has	Household	Poorest wealth	Rural location	Distance to
		is female	size	bicycle	electricity	has radio	quintile		nearest facilit
High exposure	-0.0155	-0.00487	0.00358	0.0149	- 0.0385***	-0.0479***	0.0627***	0.0580***	2.067*
	-0.0173	-0.014	-0.0679	-0.0246	-0.00998	-0.0113	-0.0143	-0.0159	-0.296
Post	- 0.0227**	-0.0122	-0.0784	0.0122	-0.000171	-0.0200***	-0.0155	0.00227	-0.0321
	-0.00914	-0.0139	-0.0578	-0.0111	-0.00514	-0.00683	-0.0102	-0.00766	-0.1
High exposure \times Post	-0.00356	0.00421	-0.0965	-0.00849	-0.00296	0.00277	0.00149	-0.00327	-0.014
	-0.0116	-0.0119	-0.0629	-0.0151	-0.00567	-0.00755	-0.0148	-0.00607	-0.067
Constant	- 0.929***	-0.259	10.56***	1.737***	- 0.183***	-0.313***	- 0.431***	0.971***	5.341**
	-0.137	-0.177	-0.765	-0.152	-0.0642	-0.0923	-0.134	-0.102	-1.293
Observations	19,680	19,680	19,680	19,680	19,680	19,680	19,680	19,680	19,211
R-squared	0.086	0.022	0.028	0.043	0.062	0.046	0.053	0.192	0.242

source: Godlonton and Okeke (2015)

Approach #3: A Falsification Test

source: Duflo (2000)

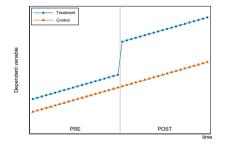
Approach #3: A Falsification Test


Dependent Va	Dependent Variable: Years of Education								
		OLS	OLS	OLS					
	Obs.	(1)	(2)	(3)					
Panel A: Entire Sample									
Intensity _j * Younger _i	78,488	0.009	0.018	0.008					
		(0.026)	(0.027)	(0.030)					
Panel B: Sample of Wage Earne	ers								
Intensity _j * Younger _i	30,255	0.012	0.024	0.079					
		(0.048)	(0.048)	(0.056)					
Controls Included:									
YOB*enrollment rate in 1971		No	Yes	Yes					
YOB*other INPRES programs		No	No	Yes					

Devendent Variables Verse of Education

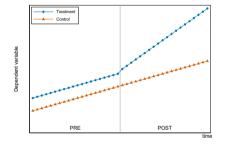
Sample includes individuals aged 12 to 24 in 1974. All Specifications include region of birth dummies, year of birth dummies, and interactions between the year of birth dummis and the number of children in the region of birth (in 1971). Standard errors are in parentheses.

Event Studies


The Difference-in-Differences Estimator

Diff-in-diff estimator is a linear combination four cell means

• In panel data, cell means average across periods


The Difference-in-Differences Estimator

Clear interpretation when treatment effect is constant

$$\Rightarrow E[Y_{it}] = \gamma_i + \lambda_t + \delta_i D_{it}$$

When Treatment Effect Changes Over Time

When treatment alters time trend (ie slope and not just level)

• DD estimand depends on chosen evaluation window

The Event Study Approach

Always plot your data (and look for a plot in papers)!

- When common trends holds, diff-in-diff estimator is still unbiased measure of average treatment effect on treated units
- Which treatment effect? Answer: "impact of X over τ years"

Alternative is to estimate treatment effect separately for each period

- Include treatment variable interacted with leads and lags
- Allows for statistical tests of functional form of effect
- Requires more data (statistical power) than pooled diff-in-diff

The Event Study Approach

Let $Z_{i,1}$ be an indicator for first observation after unit is treated

$$\Rightarrow Z_{i,1} = 1$$
 when $D_{i,t} = 1$ AND $D_{i,t-1} = 0$

 \Rightarrow $Z_{i,k}$ = indicator for the k^{th} period after treatment (starts)

 $\Rightarrow Z_{i,-k} =$ indicator for k^{th} period before treatment starts

Event study specification:

 $Y_{i,t} = \alpha + \eta_i + \phi_t +$

 $\ldots + \beta_{-2}Z_{i,-2} + \beta_1Z_{i,1} + \beta_2Z_{i,2} + \ldots + \epsilon_{i,t}$

(notice we've omitted dummy for last pre-treatment period)

The Event Study Approach in Stata

reg y minus3 minus2 minus1 plus1 plus2 plus3 i.time i.id

The Event Study Approach in Stata

reg y minus3 minus2 minus1 plus1 plus2 plus3 i.time i.id post-treatment dummies

Treatment effects relative to omitted "period zero"

 \Rightarrow Exact moment of treatment or last pre-treatment observation

The Event Study Approach in Stata

. reg y minus3 minus2 minus1 plus1 plus2 plus3 i.time i.id

Source	SS	df	MS	Number of obs	-	1,400
				F(13, 1386)	=	146.64
Model	191855.501	13	14758.1154	Prob > F	=	0.0000
Residual	139492.358	1,386	100.643837	R-squared	-	0.5790
				Adj R-squared		0.5751
Total	331347.858	1,399	236.846218	Root MSE	-	10.032

У	Coef.	Std. Err.	t	P> t	[95% Conf	Interval
minus3	1.071835	2.006428	0.53	0.593	-2.864129	5.007798
minus2	2.59693	2.006428	1.29	0.196	-1.339034	6.532894
minus1	.9845017	2.006428	0.49	0.624	-2.951462	4.92046
plus1	20.62988	2.006428	10.28	0.000	16.69392	24.5658
plus2	21.73297	2.006428	10.83	0.000	17.79701	25.6689
plus3	21.9125	2.006428	10.92	0.000	17.97654	25.8484
time						
18	-1.02448	1.418759	-0.72	0.470	-3.807626	1.75866
19	.958879	1.418759	0.68	0.499	-1.824268	3.74202
20	1.377901	1.418759	0.97	0.332	-1.405246	4.16104
21	2.864637	1.418759	2.02	0.044	.0814899	5.64778
22	2.970014	1.418759	2.09	0.036	.1868673	5.75316
23	4.825515	1.418759	3.40	0.001	2.042369	7.60866
2.id	-6.570828	1.418759	-4.63	0.000	-9.353975	-3.78768
cons	33, 30636	1,737618	19,17	0.000	29,89771	36.71

Hypotheses one might test in event studies:

- Individual coefficients (e.g. specific treatment effects) are zero
- A group of coefficients are all (jointly) equal to zero
- A group of coefficients are equal to each other (but not zero)
- A group of coefficients are related to each other linearly

In Stata, we can test hypotheses after estimation using test:

```
reg y x1 x2 x3 x4
test x1 x2 x3 x4 (list of coefficients)
test x1=x2 (test of equality)
```

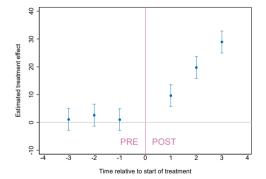
. reg y minus3 minus2 minus1 plus1 plus2 plus3 i.time i.id

Source	SS	df	MS	Number of obs	-	1,400
				F(13, 1386)	=	146.64
Model	191855.501	13	14758.1154	Prob > F	=	0.0000
Residual	139492.358	1,386	100.643837	R-squared	-	0.5790
				Adj R-squared	-	0.5751
Total	331347.858	1,399	236.846218	Root MSE	-	10.032

У	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
minus3	1.071835	2.006428	0.53	0.593	-2.864129	5.007798
minus2	2.59693	2.006428	1.29	0.196	-1.339034	6.532894
minus1	.9845017	2.006428	0.49	0.624	-2.951462	4.920466
plus1	20.62988	2.006428	10.28	0.000	16.69392	24.56585
plus2	21.73297	2.006428	10.83	0.000	17.79701	25.66893
plus3	21.9125	2.006428	10.92	0.000	17.97654	25.84847
time						
18	-1.02448	1.418759	-0.72	0.470	-3.807626	1.758667
19	.958879	1.418759	0.68	0.499	-1.824268	3.742026
20	1.377901	1.418759	0.97	0.332	-1.405246	4.161047
21	2.864637	1.418759	2.02	0.044	.0814899	5.647783
22	2.970014	1.418759	2.09	0.036	.1868673	5.753161
23	4.825515	1.418759	3.40	0.001	2.042369	7.608662
2.id	-6.570828	1.418759	-4.63	0,000	-9,353975	-3,787682
_cons	33.30636	1.737618	19.17	0.000	29.89771	36.715

```
test minus1 minus2 minus3
( 1) minus1 = 0
( 2) minus2 = 0
( 3) minus3 = 0
F(3,1386) = 0.57
Prob > F = 0.6341
```

 \Rightarrow Particularly useful in testing for pre-treatment common trends


. reg y minus3 minus2 minus1 plus1 plus2 plus3 i.time i.id

Source	SS	df	MS	Number of obs		1,400
				F(13, 1386)		146.64
Model	191855.501	13	14758.1154	Prob > F	-	0.0000
Residual	139492.358	1,386	100.643837	R-squared	-	0.5790
				Adj R-squared		0.5751
Total	331347.858	1,399	236.846218	Root MSE	-	10.032

У	Coef.	Std. Err.	t	P> t	[95% Conf	[Interval]
minus3	1.071835	2.006428	0.53	0.593	-2.864129	5.007798
minus2	2.59693	2.006428	1.29	0.196	-1.339034	6.532894
minus1	.9845017	2.006428	0.49	0.624	-2.951462	4.920466
plus1	20.62988	2.006428	10.28	0.000	16.69392	24.56585
plus2	21.73297	2.006428	10.83	0.000	17.79701	25.66893
plus3	21.9125	2.006428	10.92	0.000	17.97654	25.8484
time						
18	-1.02448	1,418759	-0.72	0.470	-3,807626	1,75866
19	.958879	1,418759	0.68	0.499	-1.824268	3,74202
20	1.377901	1.418759	0.97	0.332	-1.405246	4.16104
21	2.864637	1.418759	2.02	0.044	.0814899	5.64778
22	2.970014	1.418759	2.09	0.036	.1868673	5.75316
23	4.825515	1.418759	3.40	0.001	2.042369	7.608662
2.id	-6.570828	1,418759	-4.63	0,000	-9.353975	-3,78768
_cons	33, 30636	1.737618	19.17	0,000	29,89771	36.71

```
test plus1 = plus2 = plus3
( 1) plus1 - plus2 = 0
( 2) plus1 - plus3 = 0
F( 2, 1386) = 0.24
Prob > F = 0.7869
```

- \Rightarrow Each coefficient statistically significantly different from zero
- \Rightarrow Coefficients not significantly different from each other

. reg y minus3 minus2 minus1 plus1 plus2 plus3 i.time i.id

Source	SS	df	MS	Number of obs	-	1,400
				F(13, 1386)	-	144.36
Model	188880.541	13	14529.2724	Prob > F	=	0.0000
Residual	139492.358	1,386	100.643837	R-squared	-	0.5752
				Adj R-squared	-	0.5712
Total	328372.899	1,399	234.719727	Root MSE	-	10.032

у	Coef.	Std. Err.	t	P> t	[95% Conf	Interval
minus3	1.071835	2.006428	0.53	0.593	-2.864129	5.00779
minus2	2.59693	2.006428	1.29	0.196	-1.339034	6.532894
minus1	.9845017	2.006428	0.49	0.624	-2.951462	4.92046
plus1	9.629882	2.006428	4.80	0.000	5.693918	13.5658
plus2	19.73297	2.006428	9.83	0.000	15.79701	23.6689
plus3	28.9125	2.006428	14.41	0.000	24.97654	32.8484
time						
18	-1.02448	1.418759	-0.72	0.470	-3.807626	1.75866
19	.958879	1.418759	0.68	0.499	-1.824268	3.74202
20	1.377901	1.418759	0.97	0.332	-1.405246	4.16104
21	2.864637	1.418759	2.02	0.044	.0814899	5.64778
22	2.970014	1.418759	2.09	0.036	.1868673	5.75316
23	4.825515	1.418759	3.40	0.001	2.042369	7.60866
2.id	-6.570828	1.418759	-4.63	0.000	-9.353975	-3.78768
_cons	33.30636	1.737618	19.17	0.000	29.89771	36.71

```
Coefficients on plus1 and plus2 are not equal:
```

```
test plus1 = plus2
( 1) plus1 - plus2 = 0
F( 1, 1386) = 25.35
Prob > F = 0.0000
```

Can we reject hypothesis that plus2 is twice as large as plus1?

```
test 2*plus1 = plus2
( 1) 2*plus1 - plus2 = 0
F( 1, 1386) = 0.02
Prob > F = 0.8917
```

The end!