ECON 379: Program Evaluation for International Development

Empirical Exercise #3 Due 3/4 by 11:30 AM

In this exercise, we will use the same data set as in Exercise 1, E1-CohenEtAl-data.dta, which is a subset of the data used in the paper "Price Subsidies, Diagnostic Tests, and Targeting of Malaria Treatment: Evidence from a Randomized Controlled Trial" by Jessica Cohen, Pascaline Dupas, and Simone Schaner, published in the American Economic Review in 2015.

In this exercise, we'll look at the way beliefs about how malaria is transmitted differ across households. We'll review Stata's generate and egen commands, and we'll also practice applying the concepts covered in lecture and the readings, testing the equality of means across two groups using several different methods.

Create a do file containing the code below, and then use/modify it to answer the questions beginning at the bottom of the page:

```
// LOAD DATA
```

```
clear all
set scheme s1mono
set more off
set seed 314159
version 16.1
** change working directory as appropriate to where you want to save
cd "C:\Users\pj\Dropbox\econ379-2021\exercises\E3-false-counterfactuals"
** load the data from the course website
webuse set https://pjakiela.github.io/ECON379/exercises/E1-intro/
webuse E1-CohenEtAl-data.dta
** save the data locally (and then stop and save the do file as well)
save E3-CohenEtAl-raw-data, replace
```

Use the code above to help you answer the following questions:

- 1. Summarize the b_h_edu variable using the sum command. What is the median level of education among household heads in the sample?
- 2. Generate a dummy variable med_edu for having at least the median level of education in the sample. What is the mean of this dummy variable?

- 3. The variable **b_knowledge_correct** is a dummy variable equal to one for if the respondent knows that malaria is transmitted by mosquitos. What proportion of respondents know how malaria is transmitted?
- 4. What is the mean value of b_knowledge_correct among respondents who have at least 6 years of education (ie at least the median level of education)?
- 5. The sum (or summarize) command tells you the standard deviation of the mean of the b_knowledge_correct variable in the set of observations with med_edu==1, and it also tells you the number of observations with med_edu==1. Use (only) these two pieces of information to calculate the standard error (not the standard deviation) of the mean of the b_knowledge_correct variable in the set of observations with med_edu==1. What is this standard error?
- 6. Now use the ttest command to test whether the mean of b_knowledge_correct is equal in the group with med_edu==1 and med_edu==0. Confirm that the standard error that you calculated in Question 5 is correct. Does the mean value of b_knowledge_correct differ for respondents with above versus below median eduction? What is the t-statistic associated with this hypothesis test?
- 7. What is the standard error associated with the difference in means (of the b_knowledge_correct variable) between the med_edu==1 group and the med_edu==0 group? Calculate this by hand and convince yourself that you could derive the same answer (up to rounding error) as the ttest command.
- 8. Regress b_knowledge_correct on the continuous b_h_edu variable. What is the OLS coefficient on b_h_edu?
- 9. Generate a variable equal to the mean of b_h_edu. What is this mean?
- 10. Generate a variable equal to the difference between b_h_edu and its mean (so, the value of this variable will be different for difference observations). Call this variable ed_diff. What is the mean of ed_diff?
- 11. Generate a variable y_times_ed_diff equal to b_knowledge_correct time ed_diff. What is the mean of this variable?
- 12. Generate another variable ed_diff_square equal to ed_diff*ed_diff. What is the mean of this variable?
- 13. What is the ratio of the mean of y_times_ed_diff to the mean of ed_diff_square? (Note that this is the same as the ratio of the *sum* of all the values of y_times_ed_diff to the *sum* of all the values of ed_diff_square).
- 14. This number was the answer to one of the first 12 questions which one?