

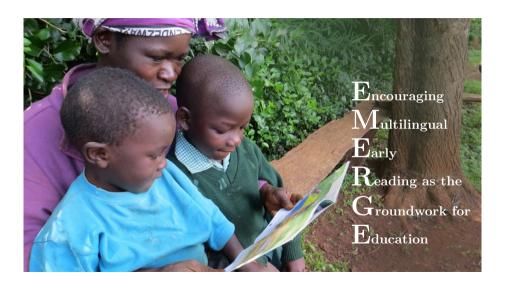
Outline

- Approaches to subset selection
- Regularization methods: ridge regression and lasso
- Choosing the penalty parameter

When Do Economists Care About Prediction? RCTs as a Case Study

- Statistical power in a randomized trial depends on residual variance in the outcome (Power is the probability of of finding an impact – i.e. rejecting H_0 – if there is one.)
 - A typical RCT regression equation: $Y_{1,i} = \alpha + \beta D_i + \delta X_{0,i} + \gamma Y_{0,i} + \varepsilon_i$
 - $Y_{1,i}$ is the outcome, measure after the intervention
 - \triangleright D_i is a dummy for being randomly assigned to the treatment group
 - $Y_{0,i}$ is the baseline value of the outcome
 - \triangleright $X_{0,i}$ is a set of other baseline covariates that (one hopes) predict $Y_{1,i}$
 - The minimum detectable effect that a researcher can expect to measure through an RCT is proportional to the standard deviation of the residuals, i.e. to the unexplained variation in Y
- Economists running RCTs choose which covariates to measure, and pay for data collection
 - ▶ We want to measure Xs that predict Y, and we don't want to throw money away (by measuring a large number of baseline covariates that do not predict variation in Y)

Choosing Covariates in an RCT: The EMERGE Project



Choosing Covariates in an RCT: The EMERGE Project

EMERGE was a cluster-randomized evaluation of an early literacy program in rural Kenya

- Intervention involved mother tongue storybooks and parent education
- Key child development outcomes of interest: literacy and vocabulary
- Large research team including me, Prof. Ozier, and two public health collaborators
- · We designed survey instruments, and had to choose which variables to measure at baseline

Child development and educational outcomes tend to have high serial correlation

- ullet Individual ability at time t-1 is a strong predictor of individual ability at time t
- The right set of covariates can substantially increase effective sample size
- Measuring child development is costly in terms of time/money because each variable is constructed from multiple survey questions, and modules are administered one-on-one

Best Subset Selection

A best subset selection algorithm:

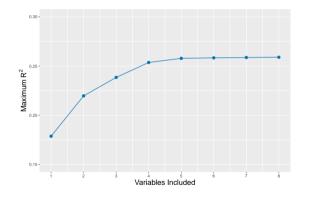
- For each number of possible covariates k = 1, 2, ..., p,
 - Fit all models containing exactly k covariates
 - ▶ Identify the "best" in terms of R^2
- Choose the best subset using cross-validation or an alternative approach
 - Need to address the fact that R^2 always increases with k

Best Subset Selection Example: EMERGE

Use N = 1,000 data set on child development outcomes from EMERGE project

- literacy: measure of early literacy based on Early Grade Reading Assessment (Y)
- age_months: child age in months at time of survey
- male: dummy for boys
- haz: height-for-age z-score, measure of nutritional status
- receptive: receptive vocabulary, i.e. the ability to understand words (z-score)
- expressive: expressive vocabulary, i.e. the ability to produce words (z-score)
- fine_motor: fine motor skills (z-score)
- hh_size: household size
- mom_educ: mother's years of schooling

R^2 Is Increasing in the Number of Covariates



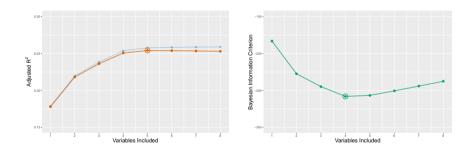
		Nu	mbe	er of	Cov	/aria	tes	es			
Variable	1	2	3	4	5	6	7	8			
age_months						Χ	Χ	Χ			
male		Χ	Χ	Χ	Χ	Χ	Χ	Χ			
haz			Χ	Χ	Χ	Χ	Χ	Χ			
receptive					Χ	Χ	Χ	Χ			
expressive	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ			
fine_motor								Χ			
hh_size							Χ	Χ			
mom_educ				Χ	Χ	Χ	Χ	Х			

Choosing the Number of Covariates: Alternatives to Cross-Validation

Three alternatives to R^2 that adjust for the number of covariates in the specification, d

- Adjusted R^2 : $1 \frac{RSS(n-d-1)}{TSS(n-1)}$ (seek to maximize)
- Akaike Information Criterion (AIC): $(RSS + 2d\hat{\sigma}^2) / n$ (seek to minimize)
- Bayesian Information Criterion (BIC): $(RSS + \ln(d)\hat{\sigma}^2) / n$ (seek to minimize)

Choosing the Number of Covariates: Alternatives to Cross-Validation



Best Subset Selection Is an Extension to OLS

In OLS, we seek to minimize:

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

Best subset selection can be expressed as: choose β to minimize

$$\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 \text{ subject to } \sum_{j=1}^p I\left(\beta_j \neq 0\right) \leq s$$

where *s* is the number of regressors/predictors/features/covariates

Best Subset Selection Is Not Feasible with Many Covariates

Best subset selection is an extension to OLS that is solved algorithmically, not analytically

- When p is large, finding the best subset is computationally impossible $(2^p 1 \text{ regressions})$
 - ▶ With 8 possible covariates: 255 regressions
 - ▶ With 20 possible covariates: over one million regressions
- Best subset selection makes sense when you can narrow the set of potential controls
 - Surveys often contain hundreds of questions
- Less computationally-intensive alternatives (forward and backward stepwise selection) exist but they are not robust to all patterns of correlation among potential covariates
 - ► Stepwise approaches involve adding (forward selection) or dropping (backward selection) the variable that gives the largest increase (forward) or smallest decrease (backward) in R²

Shrinkage Operators: Machine Learning Extensions to OLS

Machine learning shrinkage operators (ridge regression, lasso) extend OLS to better predict Y

 Basic idea is to fully "kitchen sink" our regressions while proactively correcting for potential over-fitting, allowing us to leverage info from more covariates effectively

Lasso is attractive because it identifies a subset of Xs that are most effective predictors of Y

Can We Improve on OLS?

A standard linear model may not be the best way to predict Y:

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon$$

Can we improve on OLS?

- When p is large relative to N, OLS is prone to over-fitting
- OLS explains both structural and spurious relationships in data

Like best subset selection, shrinkage operators minimize RSS subject to an additional constraint

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{i=1}^{p} \beta_j x_{ij} \right)^2$$
 subject to $f(\beta) \leq s$

Ridge Regression

Ridge regression solves the minimization problem:

$$\min_{\beta} \ \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 \text{ subject to } \sum_{j=1}^p \beta_j^2 \leq s$$

or, equivalently,

$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

for some **tuning parameter** $\lambda \geq 0$

Ridge regression shrinks OLS coefficients toward zero

 Shrinkage is more or less proportional, so ridge regression does not identify a subset of regressors to include in the regression model (it just down-weights some relative to others)

Shrinkage Operators: What's in a Name?

Like OLS, ridge regression has an analytical solution, as we can see in the p=1 case:

$$\hat{\beta}_{OLS} = \frac{\sum_{i=1}^{n} x_i y_i - N\bar{X}\bar{Y}}{\sum_{i=1}^{n} x_i^2 - N\bar{X}^2} > \frac{\sum_{i=1}^{n} x_i y_i - N\bar{X}\bar{Y}}{\sum_{i=1}^{n} x_i^2 - N\bar{X}^2 + \frac{2\lambda}{2\lambda}} = \hat{\beta}_{\textit{ridge}}$$

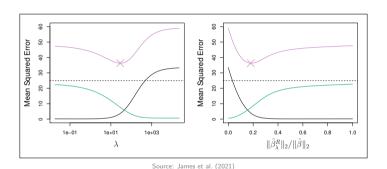
The (bivariate) ridge regression coefficient is smaller than the (bivariate) OLS coefficient

- When λ is close to 0, $\hat{\beta}_{ridge}$ is similar to $\hat{\beta}_{OLS}$
- $\hat{\beta}_{ridge}$ approaches 0 as λ gets large

With more than one independent variable, some ridge regression coefficients may be larger than OLS counterparts, and the coefficient on a specific X_k need not decline monotonically with λ

• Shrinkage is more or less proportional, so ridge regression does not identify a subset of regressors to include in the regression model (it just down-weights some relative to others)

OLS is BLUE, But Ridge Regression (Sometimes) Has Lower MSE



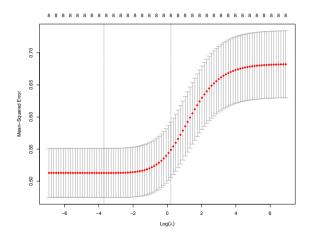
Gauss-Markov Theorem: OLS is the best linear unbiased estimator (BLUE) of Y

• Ridge regression is biased (black line), but has lower variance relative to the true underlying β (green line) and can therefore achieve lower MSE (pink line) for some λ s

Ridge Regression in Practice

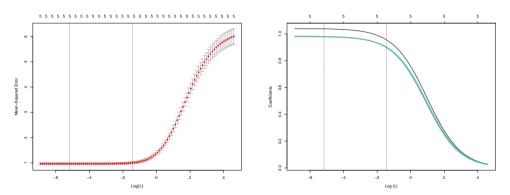
		Ridge Regression			
	OLS	$\lambda=10^{-2}$	$\lambda=10$	$\lambda=10^4$	
Variable	(1)	(2)	(3)	(4)	
expressive	0.2543	0.2498	0.0247	0.0003	
male	-0.3152	-0.3106	-0.0203	-0.0002	
haz	0.0847	0.0844	0.0130	0.0002	
mom_educ	0.0439	0.0436	0.0051	0.0001	
receptive	0.0651	0.0671	0.0195	0.0002	
$age_{-}months$	0.0024	0.0024	0.0002	0.0000	
hh_size	-0.0085	-0.0084	-0.0011	0.0000	
$fine_motor$	0.0257	0.0269	0.0160	0.0002	

Choosing the Penalty Parameter to Minimize Test MSE: EMERGE Data



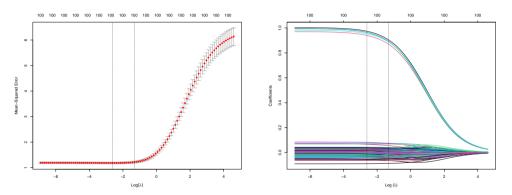
data source: EMERGE project (Jakiela, Ozier, Fernald, and Knauer 2021)

Ridge Regression in Simulated Data: N = 1000, K = 5



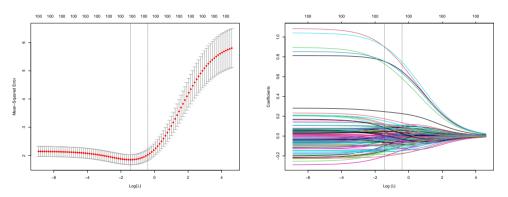
data-generating process: $Y = \sum_{k=1}^{5} X_k + \varepsilon$ where $X_k \sim N(0,1)$ for $k = 1, \ldots, 5, \ \varepsilon \sim N(0,1), \ N = 1000, \ K = 5$

Ridge Regression in Simulated Data: N = 1000, K = 100



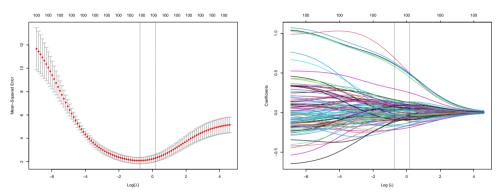
data-generating process: $Y = \sum_{k=1}^{5} X_k + \varepsilon$ where $X_k \sim N(0,1)$ for $k=1,\ldots,100,\ \varepsilon \sim N(0,1),\ N=1000,\ K=100$

Ridge Regression in Simulated Data: N = 200, K = 100



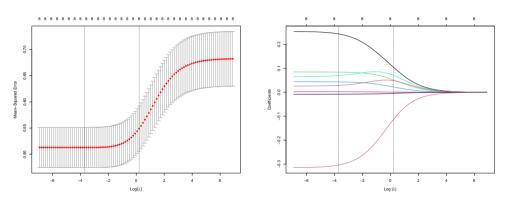
data-generating process: $Y = \sum_{k=1}^5 X_k + \varepsilon$ where $X_k \sim N(0,1)$ for $k=1,\ldots,100,\,\varepsilon \sim N(0,1),\,N=200,\,K=100$

Ridge Regression in Simulated Data: N = 120, K = 100



data-generating process: $Y = \sum_{k=1}^{5} X_k + \varepsilon$ where $X_k \sim N(0,1)$ for $k = 1, \dots, 100, \varepsilon \sim N(0,1)$, N = 120, K = 100

Ridge Regression in the EMERGE Data



data source: EMERGE project (Jakiela, Ozier, Fernald, and Knauer 2021)

Ridge Regression in Practice: Comparing MSEs in EMERGE Data

Splitting the data into a training data set and a test data set, we see that ridge reduces the MSE in the test data as expected, but not by much (relative to the SD of the outcome, 0.8258)

OLS	λ^*	λ^{1SE}
0.4928	0.4899	0.5930

 λ^* is the λ that minimizes test MSE in cross-validation, λ^{1SE} is 1 SE higher than λ^*

Shrinkage Operators: Lasso

Lasso (Least Absolute Shrinkage and Selection Operator) seeks to minimize:

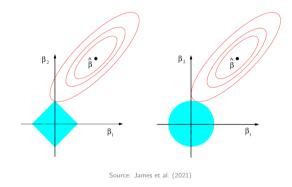
$$\min_{\beta} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

for some tuning parameter $\lambda \geq 0$

Lasso combines benefits of subset selection, ridge regression; useful for choosing covariates

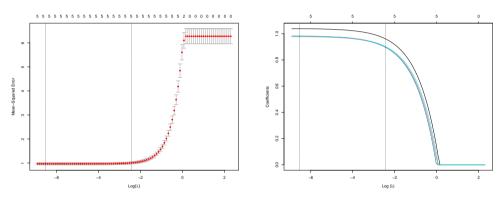
- Less computationally intensive than subset selection
- ullet Sets some coefficients to 0 ightarrow identifies parsimonious model

Lasso Sets Some Coefficients to Zero



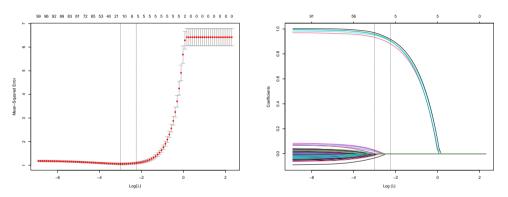
The lasso constraint region has sharp corners \Rightarrow some coefficients set to 0

Lasso in Simulated Data: N = 1000, K = 5



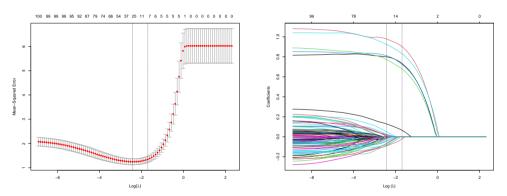
data-generating process: $Y=\sum_{k=1}^{5}X_k+\varepsilon$ where $X_k\sim N(0,1)$ for $k=1,\ldots,5$, $\varepsilon\sim N(0,1)$, N=1000, K=5

Lasso in Simulated Data: N = 1000, K = 100



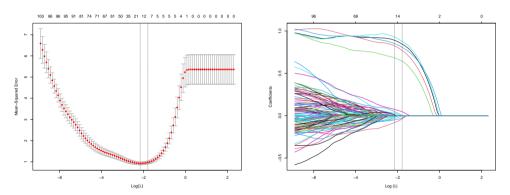
data-generating process: $Y = \sum_{k=1}^{5} X_k + \varepsilon$ where $X_k \sim N(0,1)$ for $k=1,\ldots,100,\ \varepsilon \sim N(0,1),\ N=1000,\ K=100$

Lasso in Simulated Data: N = 200, K = 100



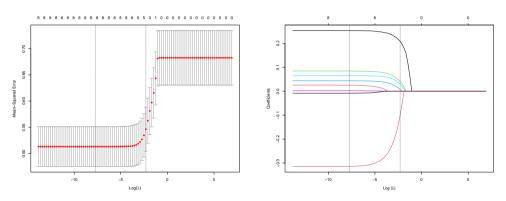
data-generating process: $Y = \sum_{k=1}^{5} X_k + \varepsilon$ where $X_k \sim N(0,1)$ for $k=1,\ldots,100$, $\varepsilon \sim N(0,1)$, N=200, K=100

Lasso in Simulated Data: N = 120, K = 100



data-generating process: $Y = \sum_{k=1}^5 X_k + \varepsilon$ where $X_k \sim N(0,1)$ for $k=1,\ldots,100,\,\varepsilon \sim N(0,1),\,N=120,\,K=100$

Lasso in Practice: EMERGE Data



data source: EMERGE project (Jakiela, Ozier, Fernald, and Knauer 2021)

Alternative "Data-Driven" Approach to Choosing λ

Belloni and Chernozhukov (2011), Belloni et al. (2012): alternative approach to choosing λ

- ullet Chooses λ iteratively based on data, penalties vary across variables
- Errs on the side of choosing fewer controls to avoid over-fitting
- Allows for heteroskedasticity
- Designed to allow for valid post-selection lasso estimation (within a single data set)

Approaches may generate different sets of controls

Costs of too many/too few may vary across empirical contexts

In N=120, K=100 simulated data, data-driven lasso $\Rightarrow 9 X$ variables selected

Comparing Approaches to Choosing Covariates via Lasso

Variable	OLS	λ^*	λ^{1SE}	λ^{DD}
age_months	Х	Х		
male	Χ	X	Χ	X
haz	Χ	X	Χ	X
receptive	Χ	X	Χ	X
expressive	Χ	X	Χ	X
$fine_motor$	Χ	X		X
hh_size	Χ	Χ		
mom_educ	Χ	X	Χ	X

Extension: Elastic Net

Elastic net solves the minimization problem:

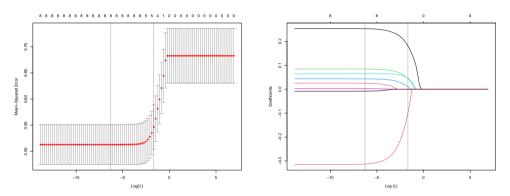
$$egin{aligned} \mathsf{min}_eta & \sum_{i=1}^n \left(\mathsf{y}_i - eta_0 - \sum_{j=1}^p eta_j \mathsf{x}_{ij}
ight)^2 + \lambda \sum_{j=1}^p \left[lpha |eta_j| + \left(1 - lpha
ight) eta_j^2
ight] \end{aligned}$$

for some tuning parameter $\lambda \geq 0$ and some $\alpha \in (0,1)$

- Elastic net splits the difference between lasso and ridge regression
- Sets some coefficients to 0, but pushes correlated variables to have similar coefficients

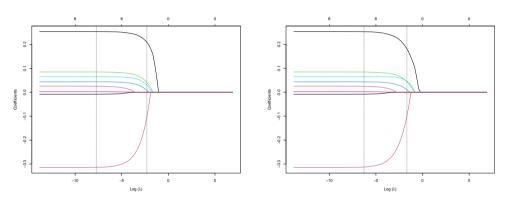
Lasso is usually preferable for covariate selection in RCTs (?)

Elastic Net in Practice: EMERGE Data



data source: EMERGE project (Jakiela, Ozier, Fernald, and Knauer 2021)

Lasso vs. Elastic Net



data source: EMERGE project (Jakiela, Ozier, Fernald, and Knauer 2021)

Summary

Best subset selection, ridge regression, and lasso are constrained extensions to OLS

- Ridge and lasso are regularized: coefficients are shrunk toward zero to reduce over-fitting
- Best subset selection and lasso are useful for model selection (i.e. choosing covariates)

Lasso is now widely used by economists to choose a subset of (many) controls to include in OLS

- Number of controls selected depends on the penalty (or tuning) parameter
 - Cross-validation is optimizing prediction, leads to the inclusion of more controls
 - ▶ Data-driven approach of Belloni et al. (2012) or 1 SE rule typically better heuristics
- Desired number of controls may also depend on the cost of adding/including a variable
 - Expressive vocabulary, male dummy both predict emergent literacy in EMERGE data, but measuring expressive vocabulary probably costs thousands of times more per child