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Outline

® Approaches to subset selection
® Regularization methods: ridge regression and lasso

® Choosing the penalty parameter
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When Do Economists Care About Prediction? RCTs as a Case Study

® Statistical power in a randomized trial depends on residual variance in the outcome
(Power is the probability of of finding an impact — i.e. rejecting Hy — if there is one.)

> A typical RCT regression equation: Yi,; = a+ 8D; + 6Xo,i +vYo,i + €i
» Yy, is the outcome, measure after the intervention
» D; is a dummy for being randomly assigned to the treatment group
> Yj,; is the baseline value of the outcome
> Xp,i is a set of other baseline covariates that (one hopes) predict Y; ;

» The minimum detectable effect that a researcher can expect to measure through an RCT is
proportional to the standard deviation of the residuals, i.e. to the unexplained variation in Y

® Economists running RCTs choose which covariates to measure, and pay for data collection

> We want to measure Xs that predict Y, and we don't want to throw money away
(by measuring a large number of baseline covariates that do not predict variation in Y)
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Choosing Covariates in an RCT: The EMERGE Project
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Choosing Covariates in an RCT: The EMERGE Project

EMERGE was a cluster-randomized evaluation of an early literacy program in rural Kenya

® |ntervention involved mother tongue storybooks and parent education

® Key child development outcomes of interest: literacy and vocabulary

® Large research team including me, Prof. Ozier, and two public health collaborators

® We designed survey instruments, and had to choose which variables to measure at baseline
Child development and educational outcomes tend to have high serial correlation

® Individual ability at time t — 1 is a strong predictor of individual ability at time t

® The right set of covariates can substantially increase effective sample size

® Measuring child development is costly in terms of time/money because each variable is
constructed from multiple survey questions, and modules are administered one-on-one
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Best Subset Selection

A best subset selection algorithm:

® For each number of possible covariates k =1,2,...,p,
> Fit all models containing exactly k covariates
> |dentify the “best” in terms of R?
® Choose the best subset using cross-validation or an alternative approach

> Need to address the fact that R? always increases with k
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Best Subset Selection Example: EMERGE

Use N = 1,000 data set on child development outcomes from EMERGE project
® literacy: measure of early literacy based on Early Grade Reading Assessment ()
® age months: child age in months at time of survey
® male: dummy for boys
® haz: height-for-age z-score, measure of nutritional status
® receptive: receptive vocabulary, i.e. the ability to understand words (z-score)
® expressive: expressive vocabulary, i.e. the ability to produce words (z-score)
® fine motor: fine motor skills (z-score)
® hh_size: household size
® mom_educ: mother's years of schooling
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Choosing the Number of Covariates: Alternatives to Cross-Validation

Three alternatives to R? that adjust for the number of covariates in the specification, d
® Adjusted R%: 1 — % (seek to maximize)
* Akaike Information Criterion (AIC): (RSS + 2d4?) /n (seek to minimize)

® Bayesian Information Criterion (BIC): (RSS + In(d)5?) /n (seek to minimize)
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Choosing the Number of Covariates: Alternatives to Cross-Validation
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Best Subset Selection Is an Extension to OLS

In OLS, we seek to minimize:

n

o 2
> <y:' —Bo— > ﬂijj>

i=1
Best subset selection can be expressed as: choose 5 to minimize
n

P 2 P
> (y,- — Bo — Zm) subject to Y /(8 #0) <'s
j=1

i=1 j=1

where s is the number of regressors/predictors/features/covariates
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Best Subset Selection Is Not Feasible with Many Covariates

Best subset selection is an extension to OLS that is solved algorithmically, not analytically
® When p is large, finding the best subset is computationally impossible (2P — 1 regressions)
» With 8 possible covariates: 255 regressions
» With 20 possible covariates: over one million regressions
® Best subset selection makes sense when you can narrow the set of potential controls
> Surveys often contain hundreds of questions

® |ess computationally-intensive alternatives (forward and backward stepwise selection) exist
but they are not robust to all patterns of correlation among potential covariates

> Stepwise approaches involve adding (forward selection) or dropping (backward selection) the
variable that gives the largest increase (forward) or smallest decrease (backward) in R?
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Shrinkage Operators: Machine Learning Extensions to OLS

Machine learning shrinkage operators (ridge regression, lasso) extend OLS to better predict Y

® Basic idea is to fully “kitchen sink” our regressions while proactively correcting for
potential over-fitting, allowing us to leverage info from more covariates effectively

Lasso is attractive because it identifies a subset of Xs that are most effective predictors of Y
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Can We Improve on OLS?

A standard linear model may not be the best way to predict Y
Y=080+5Xi+...4+ B X,+¢

Can we improve on OLS?
® When p is large relative to N, OLS is prone to over-fitting
® OLS explains both structural and spurious relationships in data

Like best subset selection, shrinkage operators minimize RSS subject to an additional constraint

n P 2
ming Z (y,- — o — Zﬂ,-x,;-) subject to f(8) < s
i=1 j=1
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Ridge Regression

Ridge regression solves the minimization problem:

n p 2 o
mins Y <}/i —Bo — Zﬁjx,—,—) subject to » 37 <'s
i=1 j=1

Jj=1

or, equivalently,

n P 2 p
miny 30 <yf . zﬁ,-x,-j> Dy
i=1 j=1 j=1
for some tuning parameter A > 0

Ridge regression shrinks OLS coefficients toward zero

® Shrinkage is more or less proportional, so ridge regression does not identify a subset of
regressors to include in the regression model (it just down-weights some relative to others)

Economics 370: Data Science for Economics (Professor Jakiela) Subset Selection, Regularization, and Lasso, Slide 15



Shrinkage Operators: What's in a Name?

Like OLS, ridge regression has an analytical solution, as we can see in the p = 1 case:

S Xiyi— NXY S XiYi — NXY _ 3
S x2— NX2 S x?— NX2 4 2\

=17 i=1

ﬁ OoLS = ridge

The (bivariate) ridge regression coefficient is smaller than the (bivariate) OLS coefficient
® When )\ is close to 0, B,,-dge is similar to /S’OLS
° Bridge approaches 0 as \ gets large

With more than one independent variable, some ridge regression coefficients may be larger than
OLS counterparts, and the coefficient on a specific Xix need not decline monotonically with A

® Shrinkage is more or less proportional, so ridge regression does not identify a subset of
regressors to include in the regression model (it just down-weights some relative to others)
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OLS is BLUE, But Ridge Regression (Sometimes) Has

Lower MSE
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Source: James et al. (2021)

Gauss-Markov Theorem: OLS is the best linear unbiased estimator (BLUE) of Y

® Ridge regression is biased (black line), but has lower variance relative to the true
underlying 3 (green line) and can therefore achieve lower MSE (pink line) for some As
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Ridge Regression in Practice

Ridge Regression
OLS X=10"% A=10 A=10

Variable (1) (2) 3) (4)
expressive 0.2543 0.2498 0.0247 0.0003
male -0.3152 -0.3106 -0.0203 -0.0002

haz 0.0847 0.0844 0.0130 0.0002
mom_educ 0.0439 0.0436 0.0051 0.0001
receptive 0.0651 0.0671 0.0195 0.0002
age_months 0.0024 0.0024 0.0002 0.0000
hh_size -0.0085 -0.0084 -0.0011 0.0000

fine_motor 0.0257 0.0269 0.0160 0.0002
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Choosing the Penalty Parameter to Minimize Test MSE: EMERGE Data
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data source: EMERGE project (Jakiela, Ozier, Fernald, and Knauer 2021)
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Mean-Squared Error

Ridge Regression in Simulated Data: N = 1000, K =5
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data-generating process: Y = 33 | Xi + € where Xx ~ N(0,1) for k =1,..., 5, e~ N(0,1), N =1000, K =5
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Ridge Regression in Simulated Data: N = 1000, K = 100
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data-generating process: Y = 3_5_, Xy + € where Xx ~ N(0,1) for k =1,..., 100, € ~ N(0,1), N = 1000, K = 100
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Ridge Regression in Simulated Data: N = 200, K = 100
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data-generating process: Y = 3_3_, Xi + € where Xx ~ N(0,1) for k =1,...,100, £ ~ N(0,1), N = 200, K = 100
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Ridge Regression in Simulated Data: N = 120, K = 100
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data-generating process: Y = >_3_, Xi + € where Xx ~ N(0,1) for k =1,...,100, £ ~ N(0,1), N = 120, K = 100
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Mean-Squared Error
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Ridge Regression in the EMERGE Data
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data source: EMERGE project (Jakiela, Ozier, Fernald, and Knauer 2021)
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Ridge Regression in Practice: Comparing MSEs in EMERGE Data

Splitting the data into a training data set and a test data set, we see that ridge reduces the
MSE in the test data as expected, but not by much (relative to the SD of the outcome, 0.8258)

oLS A A\LSE
0.4928  0.4899  0.5930

A\* is the A that minimizes test MSE in cross-validation, A'5F is 1 SE higher than \*
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Shrinkage Operators: Lasso

Lasso (Least Absolute Shrinkage and Selection Operator) seeks to minimize:
n p 2 p
ming Y <Yi — o — Zﬂm;) +A> 18]
i=1 j=1 j=1
for some tuning parameter A > 0

Lasso combines benefits of subset selection, ridge regression; useful for choosing covariates
® | ess computationally intensive than subset selection

® Sets some coefficients to 0 — identifies parsimonious model
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Lasso Sets Some Coefficients to Zero

By B,

Source: James et al. (2021)

The lasso constraint region has sharp corners = some coefficients set to 0
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Mean-Squared Error

Lasso in Simulated Data: N = 1000, K =5
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Lasso in Simulated Data: N = 1000, K = 100
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data-generating process: Y = 3_5_, Xy + € where Xx ~ N(0,1) for k =1,..., 100, € ~ N(0,1), N = 1000, K = 100
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Lasso in Simulated Data: N = 200, K = 100
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data-generating process: Y = 3_3_, Xi + € where Xx ~ N(0,1) for k =1,...,100, £ ~ N(0,1), N = 200, K = 100
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Lasso in Simulated Data: N = 120, K = 100
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data-generating process: Y = >_3_, Xi + € where Xx ~ N(0,1) for k =1,...,100, £ ~ N(0,1), N = 120, K = 100
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Mean-Squared Error
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Lasso in Practice: EMERGE Data
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Alternative “Data-Driven” Approach to Choosing A

Belloni and Chernozhukov (2011), Belloni et al. (2012): alternative approach to choosing A
® Chooses A\ iteratively based on data, penalties vary across variables

® Errs on the side of choosing fewer controls to avoid over-fitting

Allows for heteroskedasticity

® Designed to allow for valid post-selection lasso estimation (within a single data set)
Approaches may generate different sets of controls

® Costs of too many/too few may vary across empirical contexts

In N =120, K = 100 simulated data, data-driven lasso = 9 X variables selected
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Comparing Approaches to Choosing Covariates via Lasso

Variable oLS AISE \PD

>
*
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X X X X
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hh _size

X X X X X X X X
X X X X X X X X

mom_educ

Economics 370: Data Science for Economics (Professor Jakiela) Subset Selection, Regularization, and Lasso, Slide 34



Extension: Elastic Net

Elastic net solves the minimization problem:

n p 2 p
ming Z(yf—ﬁo—Zﬁ,-xij) +AD [alfl + (1 - ) 8]
i=1 j=1

j=1

for some tuning parameter A > 0 and some « € (0,1)

® Elastic net splits the difference between lasso and ridge regression
® Sets some coefficients to 0, but pushes correlated variables to have similar coefficients

Lasso is usually preferable for covariate selection in RCTs (?)

Economics 370: Data Science for Economics (Professor Jakiela) Subset Selection, Regularization, and Lasso, Slide 35



Mean-Squared Error
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Elastic Net in Practice: EMERGE Data

8888888888888888865541000000000000

00
L

Coefficients

T T T T
10 -5 -10 -5 o
Log(n) Log ()

data source: EMERGE project (Jakiela, Ozier, Fernald, and Knauer 2021)
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data source: EMERGE project (Jakiela, Ozier, Fernald, and Knauer 2021)
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Summary

Best subset selection, ridge regression, and lasso are constrained extensions to OLS
® Ridge and lasso are regularized: coefficients are shrunk toward zero to reduce over-fitting
® Best subset selection and lasso are useful for model selection (i.e. choosing covariates)
Lasso is now widely used by economists to choose a subset of (many) controls to include in OLS
® Number of controls selected depends on the penalty (or tuning) parameter
» Cross-validation is optimizing prediction, leads to the inclusion of more controls
» Data-driven approach of Belloni et al. (2012) or 1 SE rule typically better heuristics
® Desired number of controls may also depend on the cost of adding/including a variable

> Expressive vocabulary, male dummy both predict emergent literacy in EMERGE data,
but measuring expressive vocabulary probably costs thousands of times more per child
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