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Outline

• Approaches to subset selection

• Regularization methods: ridge regression and lasso

• Choosing the penalty parameter
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When Do Economists Care About Prediction? RCTs as a Case Study

• Statistical power in a randomized trial depends on residual variance in the outcome
(Power is the probability of of finding an impact – i.e. rejecting H0 – if there is one.)

▶ A typical RCT regression equation: Y1,i = α+ βDi + δX0,i + γY0,i + εi

▶ Y1,i is the outcome, measure after the intervention

▶ Di is a dummy for being randomly assigned to the treatment group

▶ Y0,i is the baseline value of the outcome

▶ X0,i is a set of other baseline covariates that (one hopes) predict Y1,i

▶ The minimum detectable effect that a researcher can expect to measure through an RCT is
proportional to the standard deviation of the residuals, i.e. to the unexplained variation in Y

• Economists running RCTs choose which covariates to measure, and pay for data collection

▶ We want to measure X s that predict Y , and we don’t want to throw money away
(by measuring a large number of baseline covariates that do not predict variation in Y )
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Choosing Covariates in an RCT: The EMERGE Project
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Choosing Covariates in an RCT: The EMERGE Project

EMERGE was a cluster-randomized evaluation of an early literacy program in rural Kenya

• Intervention involved mother tongue storybooks and parent education

• Key child development outcomes of interest: literacy and vocabulary

• Large research team including me, Prof. Ozier, and two public health collaborators

• We designed survey instruments, and had to choose which variables to measure at baseline

Child development and educational outcomes tend to have high serial correlation

• Individual ability at time t − 1 is a strong predictor of individual ability at time t

• The right set of covariates can substantially increase effective sample size

• Measuring child development is costly in terms of time/money because each variable is
constructed from multiple survey questions, and modules are administered one-on-one
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Best Subset Selection

A best subset selection algorithm:

• For each number of possible covariates k = 1, 2, . . . , p,

▶ Fit all models containing exactly k covariates

▶ Identify the “best” in terms of R2

• Choose the best subset using cross-validation or an alternative approach

▶ Need to address the fact that R2 always increases with k
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Best Subset Selection Example: EMERGE

Use N = 1,000 data set on child development outcomes from EMERGE project

• literacy: measure of early literacy based on Early Grade Reading Assessment (Y )

• age months: child age in months at time of survey

• male: dummy for boys

• haz: height-for-age z-score, measure of nutritional status

• receptive: receptive vocabulary, i.e. the ability to understand words (z-score)

• expressive: expressive vocabulary, i.e. the ability to produce words (z-score)

• fine motor: fine motor skills (z-score)

• hh size: household size

• mom educ: mother’s years of schooling
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R2 Is Increasing in the Number of Covariates
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Choosing the Number of Covariates: Alternatives to Cross-Validation

Three alternatives to R2 that adjust for the number of covariates in the specification, d

• Adjusted R2: 1− RSS(n−d−1)
TSS(n−1) (seek to maximize)

• Akaike Information Criterion (AIC):
(
RSS + 2d σ̂2

)
/n (seek to minimize)

• Bayesian Information Criterion (BIC):
(
RSS + ln(d)σ̂2

)
/n (seek to minimize)
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Choosing the Number of Covariates: Alternatives to Cross-Validation
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Best Subset Selection Is an Extension to OLS

In OLS, we seek to minimize:

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

Best subset selection can be expressed as: choose β to minimize

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

subject to

p∑
j=1

I (βj ̸= 0) ≤ s

where s is the number of regressors/predictors/features/covariates
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Best Subset Selection Is Not Feasible with Many Covariates

Best subset selection is an extension to OLS that is solved algorithmically, not analytically

• When p is large, finding the best subset is computationally impossible (2p − 1 regressions)

▶ With 8 possible covariates: 255 regressions

▶ With 20 possible covariates: over one million regressions

• Best subset selection makes sense when you can narrow the set of potential controls

▶ Surveys often contain hundreds of questions

• Less computationally-intensive alternatives (forward and backward stepwise selection) exist
but they are not robust to all patterns of correlation among potential covariates

▶ Stepwise approaches involve adding (forward selection) or dropping (backward selection) the
variable that gives the largest increase (forward) or smallest decrease (backward) in R2
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Shrinkage Operators: Machine Learning Extensions to OLS

Machine learning shrinkage operators (ridge regression, lasso) extend OLS to better predict Y

• Basic idea is to fully “kitchen sink” our regressions while proactively correcting for
potential over-fitting, allowing us to leverage info from more covariates effectively

Lasso is attractive because it identifies a subset of X s that are most effective predictors of Y
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Can We Improve on OLS?

A standard linear model may not be the best way to predict Y :

Y = β0 + β1X1 + . . .+ βpXp + ε

Can we improve on OLS?

• When p is large relative to N, OLS is prone to over-fitting

• OLS explains both structural and spurious relationships in data

Like best subset selection, shrinkage operators minimize RSS subject to an additional constraint

minβ

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

subject to f (β) ≤ s
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Ridge Regression

Ridge regression solves the minimization problem:

minβ

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

subject to

p∑
j=1

β2
j ≤ s

or, equivalently,

minβ

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

β2
j

for some tuning parameter λ ≥ 0

Ridge regression shrinks OLS coefficients toward zero

• Shrinkage is more or less proportional, so ridge regression does not identify a subset of
regressors to include in the regression model (it just down-weights some relative to others)
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Shrinkage Operators: What’s in a Name?

Like OLS, ridge regression has an analytical solution, as we can see in the p = 1 case:

β̂OLS =

∑n
i=1 xiyi − NX̄ Ȳ∑n
i=1 x

2
i − NX̄ 2

>

∑n
i=1 xiyi − NX̄ Ȳ∑n

i=1 x
2
i − NX̄ 2 + 2λ

= β̂ridge

The (bivariate) ridge regression coefficient is smaller than the (bivariate) OLS coefficient

• When λ is close to 0, β̂ridge is similar to β̂OLS

• β̂ridge approaches 0 as λ gets large

With more than one independent variable, some ridge regression coefficients may be larger than
OLS counterparts, and the coefficient on a specific Xk need not decline monotonically with λ

• Shrinkage is more or less proportional, so ridge regression does not identify a subset of
regressors to include in the regression model (it just down-weights some relative to others)
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OLS is BLUE, But Ridge Regression (Sometimes) Has Lower MSE
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Source: James et al. (2021)

Gauss-Markov Theorem: OLS is the best linear unbiased estimator (BLUE) of Y

• Ridge regression is biased (black line), but has lower variance relative to the true
underlying β (green line) and can therefore achieve lower MSE (pink line) for some λs
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Ridge Regression in Practice

Ridge Regression

OLS λ = 10−2 λ = 10 λ = 104

Variable (1) (2) (3) (4)

expressive 0.2543 0.2498 0.0247 0.0003

male -0.3152 -0.3106 -0.0203 -0.0002

haz 0.0847 0.0844 0.0130 0.0002

mom educ 0.0439 0.0436 0.0051 0.0001

receptive 0.0651 0.0671 0.0195 0.0002

age months 0.0024 0.0024 0.0002 0.0000

hh size -0.0085 -0.0084 -0.0011 0.0000

fine motor 0.0257 0.0269 0.0160 0.0002
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Choosing the Penalty Parameter to Minimize Test MSE: EMERGE Data
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data source: EMERGE project (Jakiela, Ozier, Fernald, and Knauer 2021)
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Ridge Regression in Simulated Data: N = 1000, K = 5
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data-generating process: Y =
∑5

k=1 Xk + ε where Xk ∼ N(0, 1) for k = 1, . . . , 5, ε ∼ N(0, 1), N = 1000, K = 5

Economics 370: Data Science for Economics (Professor Jakiela) Subset Selection, Regularization, and Lasso, Slide 20



Ridge Regression in Simulated Data: N = 1000, K = 100
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data-generating process: Y =
∑5

k=1 Xk + ε where Xk ∼ N(0, 1) for k = 1, . . . , 100, ε ∼ N(0, 1), N = 1000, K = 100
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Ridge Regression in Simulated Data: N = 200, K = 100
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data-generating process: Y =
∑5

k=1 Xk + ε where Xk ∼ N(0, 1) for k = 1, . . . , 100, ε ∼ N(0, 1), N = 200, K = 100
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Ridge Regression in Simulated Data: N = 120, K = 100
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data-generating process: Y =
∑5

k=1 Xk + ε where Xk ∼ N(0, 1) for k = 1, . . . , 100, ε ∼ N(0, 1), N = 120, K = 100
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Ridge Regression in the EMERGE Data
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data source: EMERGE project (Jakiela, Ozier, Fernald, and Knauer 2021)
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Ridge Regression in Practice: Comparing MSEs in EMERGE Data

Splitting the data into a training data set and a test data set, we see that ridge reduces the
MSE in the test data as expected, but not by much (relative to the SD of the outcome, 0.8258)

OLS λ∗ λ1SE

0.4928 0.4899 0.5930

λ∗ is the λ that minimizes test MSE in cross-validation, λ1SE is 1 SE higher than λ∗
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Shrinkage Operators: Lasso

Lasso (Least Absolute Shrinkage and Selection Operator) seeks to minimize:

minβ

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

|βj |

for some tuning parameter λ ≥ 0

Lasso combines benefits of subset selection, ridge regression; useful for choosing covariates

• Less computationally intensive than subset selection

• Sets some coefficients to 0 → identifies parsimonious model
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Lasso Sets Some Coefficients to Zero

Source: James et al. (2021)

The lasso constraint region has sharp corners ⇒ some coefficients set to 0
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Lasso in Simulated Data: N = 1000, K = 5
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data-generating process: Y =
∑5

k=1 Xk + ε where Xk ∼ N(0, 1) for k = 1, . . . , 5, ε ∼ N(0, 1), N = 1000, K = 5
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Lasso in Simulated Data: N = 1000, K = 100
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data-generating process: Y =
∑5

k=1 Xk + ε where Xk ∼ N(0, 1) for k = 1, . . . , 100, ε ∼ N(0, 1), N = 1000, K = 100
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Lasso in Simulated Data: N = 200, K = 100
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data-generating process: Y =
∑5

k=1 Xk + ε where Xk ∼ N(0, 1) for k = 1, . . . , 100, ε ∼ N(0, 1), N = 200, K = 100
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Lasso in Simulated Data: N = 120, K = 100
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data-generating process: Y =
∑5

k=1 Xk + ε where Xk ∼ N(0, 1) for k = 1, . . . , 100, ε ∼ N(0, 1), N = 120, K = 100
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Lasso in Practice: EMERGE Data
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data source: EMERGE project (Jakiela, Ozier, Fernald, and Knauer 2021)
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Alternative “Data-Driven” Approach to Choosing λ

Belloni and Chernozhukov (2011), Belloni et al. (2012): alternative approach to choosing λ

• Chooses λ iteratively based on data, penalties vary across variables

• Errs on the side of choosing fewer controls to avoid over-fitting

• Allows for heteroskedasticity

• Designed to allow for valid post-selection lasso estimation (within a single data set)

Approaches may generate different sets of controls

• Costs of too many/too few may vary across empirical contexts

In N = 120, K = 100 simulated data, data-driven lasso ⇒ 9 X variables selected
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Comparing Approaches to Choosing Covariates via Lasso

Variable OLS λ∗ λ1SE λDD

age months X X

male X X X X

haz X X X X

receptive X X X X

expressive X X X X

fine motor X X X

hh size X X

mom educ X X X X
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Extension: Elastic Net

Elastic net solves the minimization problem:

minβ

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
j=1

[
α|βj |+ (1− α)β2

j

]
for some tuning parameter λ ≥ 0 and some α ∈ (0, 1)

• Elastic net splits the difference between lasso and ridge regression

• Sets some coefficients to 0, but pushes correlated variables to have similar coefficients

Lasso is usually preferable for covariate selection in RCTs (?)
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Elastic Net in Practice: EMERGE Data
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data source: EMERGE project (Jakiela, Ozier, Fernald, and Knauer 2021)
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Lasso vs. Elastic Net

−10 −5 0 5

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

Log (λ)

C
oe

ffi
ci

en
ts

8 8 0 0

−10 −5 0 5

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2

Log (λ)

C
oe

ffi
ci

en
ts

8 8 0 0

data source: EMERGE project (Jakiela, Ozier, Fernald, and Knauer 2021)
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Summary

Best subset selection, ridge regression, and lasso are constrained extensions to OLS

• Ridge and lasso are regularized: coefficients are shrunk toward zero to reduce over-fitting

• Best subset selection and lasso are useful for model selection (i.e. choosing covariates)

Lasso is now widely used by economists to choose a subset of (many) controls to include in OLS

• Number of controls selected depends on the penalty (or tuning) parameter

▶ Cross-validation is optimizing prediction, leads to the inclusion of more controls

▶ Data-driven approach of Belloni et al. (2012) or 1 SE rule typically better heuristics

• Desired number of controls may also depend on the cost of adding/including a variable

▶ Expressive vocabulary, male dummy both predict emergent literacy in EMERGE data,
but measuring expressive vocabulary probably costs thousands of times more per child
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