

Outline

- Review of the potential outcomes framework
- Causal forests
- Lab: buried treasure

The Causal Impact of Treatment

We are interested in the relationship between some "**treatment**" (e.g. going to the hospital) and some outcome that may be impacted by the treatment (eg. self-assessed health status)

Each individual is either treated or not:

• W_i = is a **treatment dummy** equal to 1 if *i* is treated and 0 otherwise

Outcome of interest:

- Y = outcome we are interested in studying (e.g. health status)
- Y_i = value of outcome of interest for individual i

Potential Outcomes

For each individual, there are two **potential outcomes**:

- $Y_{0,i} = i$'s outcome if she **doesn't** receive treatment
- $Y_{1,i} = i$'s outcome if she **does** receive treatment

The **causal impact** of treatment on individual *i* is: $\tau_i = Y_{1,i} - Y_{0,i}$

- How much does treatment change outcome of interest for *i*?
- We are often interested in average treatment effect average of τ_i across people
- We are also interested in understanding variation in τ_i across people and subgroups

Potential Outcomes: Example

Alejandro has a broken leg.

- $Y_{0,a} =$ If he doesn't go to the hospital, his leg won't heal properly
- $Y_{1,a} =$ If he goes to the hospital, his leg heals completely

Benicio doesn't have any broken bones. His health is fine.

- $Y_{0,b} =$ If he doesn't go to the hospital, his health is still fine
- $Y_{1,b} =$ If he goes to the hospital, his health is still fine

Potential Outcomes: Example

	Yes Hospital	No Hospital
Alejandro	$Y_{1,a}$	$Y_{0,a}$
Benicio	$Y_{1,b}$	Y _{0,b}

The Fundamental Problem of Causal Inference

The fundamental problem of causal inference:

We never observe both potential outcomes for the same individual

 \Rightarrow Creates a missing data problem whenever we try to compare treated to untreated

For any individual, we can only observe one potential outcome:

$$Y_i = \begin{cases} Y_{0,i} & \text{if } W_i = 0\\ Y_{1,i} & \text{if } W_i = 1 \end{cases}$$

Potential outcomes without treatment (i.e. values of $Y_{0,i}$) may differ between those who choose to take-up treatment (Alejandro with a broken leg) and those who do not (healthy Benicio)

The quantity of interest is the **average treatment effect** (ATE), or average causal effect, or intent-to-treat effect, or average impact, or treatment effect...

$$E[Y_{1,i} - Y_{0,i}|W_i = 1] = E[Y_{1,i}|W_i = 1] - E[Y_{0,i}|W_i = 1]$$

- ATE is average difference in potential outcomes (usually) across treated population
- Fundamental problem of causal inference: we never observe $Y_{0,i}$ for treatment group
 - \overline{Y}_T is an unbiased estimator of $E[Y_i|W_i = 1] = E[Y_{1,i}|W_i = 1]$

• We need an unbiased estimator of
$$E[Y_{0,i}|W_i = 1]$$

Selection Bias

When we compare (many) participants to (many) non-participants:

$$E[\bar{Y}_{T} - \bar{Y}_{C}] = E[Y_{i}|W_{i} = 1] - E[Y_{i}|W_{i} = 0]$$
$$= E[Y_{1,i}|W_{i} = 1] - E[Y_{0,i}|W_{i} = 0]$$

Adding in
$$\underbrace{-E[Y_{0,i}|W_i = 1] + E[Y_{0,i}|W_i = 1]}_{=0}$$
, we get:

$$\underbrace{-E[Y_{1,i}|W_i = 1] - E[Y_{0,i}|W_i = 1] + E[Y_{0,i}|W_i = 1]}_{=0}$$

 $= \underbrace{E[Y_{1,i}|W_i = 1] - E[Y_{0,i}|W_i = 1]}_{\text{average causal effect on participants}} + \underbrace{E[Y_{0,i}|W_i = 1] - E[Y_{0,i}|W_i = 0]}_{\text{selection bias}}$

Economics 370: Data Science for Economics (Professor Jakiela)

Causal Forests, Slide 10

Random Assignment Eliminates Selection Bias

Experimental approach:

• **Random assignment to treatment:** eligibility for program is determined at random, e.g. via pulling names out of a hat, or using a computer pseudo-random number generator

When treatment status is randomly assigned,

treatment, control groups are random samples of a single population (e.g. the population of all eligible applicants for the program)

$$\Rightarrow E[Y_{0,i}|W_i = 1] = E[Y_{0,i}|W_i = 0] = E[Y_{0,i}]$$

Expected outcomes are equal in the absence of the program

Random Assignment Eliminates Selection Bias

 $\bar{Y}_T - \bar{Y}_C$ provides an unbiased estimate of the (casual) average treatment effect (or ATE):

Causal Forests

A **causal forest** is a machine learning algorithm for identifying treatment effect heterogeneity (Athey and Imbens 2016, Davis and Heller 2017, Wager and Athey 2018)

Causal Forests Are Built from Regression Trees

- A regression tree is an algorithm that predicts Y_i through recursive binary splitting
- A random forest predicts Y_i by averaging many regression trees
- A **causal tree** is a regression tree where successive partitions are chosen to minimize expected mean squared error of estimated treatment effects (instead of MSE of Y)
 - Identifying sub-samples with less treatment effect heterogeneity
- A **causal forest** is a random forest of causal trees
- Honest trees use split sample methods for partitioning, estimation, inference
 - Allows for the construction of standard errors

Causal Forests in R and Python

- Causal forests are implemented as double ML (relevant when treatment is not random)
 - Use X variables to predict outcome Y and treatment W
 - **>** Train the causal forest on residualized $\tilde{Y} = Y \hat{Y}$ and $\tilde{W} = W \hat{W}$
 - In R (grf), we can set the predicted values of to 0 or the mean
 - ▶ In Python (econml), we have to choose an ML model to predict Y, W
 - Tuning parameters are similar to regression trees and random forests
 - Number of trees, minimum leaf size, depth (Python)
 - Proportion treated within a leaf is also relevant with trees

Interpreting Causal Forests

Causal forests (can) tell us two things:

- Is there (meaningful) treatment effect heterogeneity that is explained by observables?
 - Machine learning is noisy in small samples!
 - Algorithm looks for heterogeneity that is predicted by covariates
- Which baseline covariates predict the observed treatment effect heterogeneity?

Relevant outputs from causal forests:

- What are the observation-level out-of-bag (OOB) predicted conditional ATEs (CATEs)?
- Does the variation in OOB CATES explain variation in Y (test calibration in R)?
- Are estimated treatment effects higher for observations w/ high OOB CATEs?
- How often was a covariate was used to split tree?

Lab #8

Objective: find the treatment effect heterogeneity hidden in the DHS

Economics 370: Data Science for Economics (Professor Jakiela) Causal Forests, Slide 17