

Outline

- Regression trees
- Three extensions: bagging, random forests, boosting
- Lab: using DHS data

Thought Experiment

Suppose X_1 , X_2 and ε are iid standard normal, and let $Y=X_1+\varepsilon$ The variance of Y is 2, so if you predicted Y with the mean of Y, E[MSE]=2

Suppose you split the sample based on X_2 , into an $X_2 < 0$ subsample and an $X_2 \ge 0$ subsample What is the expected variance within each subsample?

If you predict Y with the mean in each subsample, what is the expected MSE?

What if you split the sample based on X_1 , into an $X_1 < 0$ subsample and an $X_1 \ge 0$ subsample What is the expected variance within each subsample?

If you predict Y with the mean in each subsample, what is the expected MSE?

Partitioning the Sample to Reduce (Subsample) Variance

Building a Regression Tree

A regression tree:

- Partitions data into homogeneous leaves (subsamples) through recursive binary splitting
- Each observation is mapped to a single leaf (i.e. a terminal node at the bottom of the tree)
- The predicted outcome Y for observation i in leaf j is the mean in Y in leaf j

Building a regression tree:

- To make the first partition of the sample, we identify the binary split of the data that leads to the largest reduction in (training) MSE by searching over all the. . .
 - dummy variables in the data, including dummies for values of categorical variables
 - possible cutoff values s for all the continuous/numeric variables (that partition the sample)
- To make all subsequent splits, we repeat this process for each subsample to identify the best next split (to reduce MSE) until we reach a maximum depth, minimum leaf size, etc.

Building a Regression Tree with the EMERGE Data: $max_depth = 1$

```
expressive \leq 1.365
           squared error = 0.637
               samples = 600
               value = -0.063
squared error = 0.352
                       squared error = 2.142
   samples = 541
                           samples = 59
   value = -0.172
                           value = 0.936
```

data source: EMERGE, N=1000, Y= literacy, X variables (child age, expressive vocab, fine motor skills, HAZ, HH size, male, mother's education, receptive vocab)

Evaluating a Regression Tree

data source: EMERGE

Does partitioning the sample succeed, generating more accurate predictions of Y and reducing test MSE?

- Split the data into test/train to assess this
- Benchmark: using mean $Y \rightarrow \text{test MSE}$ of 0.749
- A tree with one split \rightarrow test MSE of 0.712
- This obviously depends on your data
 - expressive is a strong predictor of literacy
 - \triangleright N = 1000 large relative to p = 8

Building a Regression Tree with the EMERGE Data: $max_depth = 2$

data source: EMERGE, N = 1000, Y = literacy, X variables (child age, expressive vocab, fine motor skills, HAZ, HH size, male, mother's education, receptive vocab)

Constraining the Minimum Leaf Size

No minimum leaf size: test MSE = 0.660

Minimum leaf size 10: test MSE = 0.637

Building a Regression Tree with the EMERGE Data: $max_depth = 3$

data source: EMERGE. N = 1000, Y = literacy, X variables (child age, expressive vocab, fine motor skills, HAZ, HH size, male, mother's education, receptive vocab)

Test MSE = 0.615

Building a Regression Tree with the EMERGE Data: max_depth = 4

data source: EMERGE, N = 1000, Y = literacy, X variables (child age, expressive vocab, fine motor skills, HAZ, HH size, male, mother's education, receptive vocab)

Test MSE = 0.612

Building a Regression Tree with the EMERGE Data: $max_depth = 5$

data source: EMERGE, N = 1000, Y = literacy, X variables (child age, expressive vocab, fine motor skills, HAZ, HH size, male, mother's education, receptive vocab)

Test MSE = 0.609

No Constraints on Depth Can Lead to Over-Fitting

data source: EMERGE. N = 1000, Y = literacy. X variables (child age, expressive vocab, fine motor skills, HAZ, HH size, male, mother's education, receptive vocab)

With no constraints on tree depth, test MSE = 0.645

With No Constraints on Depth or Minimum Leaf Size, Test MSE = 1.123

data source: EMERGE, N = 1000, Y = literacy, X variables (child age, expressive vocab, fine motor skills, HAZ, HH size, male, mother's education, receptive vocab)

Strengths of Regression Trees

- Tend to identify important predictors of Y
 - Continuous predictors may be used multiple times
 - Expressive vocabulary, mother's education. height-for-age used repeatedly in a single tree
- Leverage Xs in a parsimonious and intuitive way
 - Distinguishes between important, unimportant Xs
- Good at identifying interactions between covariates
 - Is the linear model a reasonable approximation of the true underlying relationship between Xs and Y?

Weaknesses of Regression Trees

- ullet Can be prone to over-fitting, particularly when the number of variables large relative to N
 - ► Techniques for pruning and constraining tree depth or leaf size are somewhat ad hoc
- Not particularly robust (e.g. to small changes in the analysis sample)
- May not compete with other approaches in terms of predictive accuracy

Bagging

- Bootstrap sampling: sampling from a data set with replacement
 - ▶ Provides a measure of how much estimates might change because of sampling variation
- Bootstrap aggregation or bagging involves estimating multiple regression trees
 on bootstrapped samples of a data set, an then averaging predictions across trees
 - Bootstrapped data sets are slightly different
 - ► Tends to lower test MSE relative to a single tree
- Not all observations are included in a bootstrap sample (or bag)
 - Out-of-bag (OOB) predictions, MSE are a natural analog to cross-validation MSE

Random Forests

- Random forests extend bagging by considering only a random subset of Xs at each split
 - Limits over-reliance on a small number of key predictors
- · Bagging can be seen as a special case of a random forest where all variables are considered
- In practice, no one uses a single regression tree except as an example
- We cannot visualize a random forest the way we can visualize a regression tree
 - Measures of variable importance indicate how often a variable is chosen across trees

Gradient-Boosted Trees

- In a random forest, each regression tree is independent of all other trees
 - A gradient-boosted tree is part of a (non-random) forest with interdependent trees
- The basic idea is simple:
 - Step 1: fit a regression tree that is not very deep (one or two spilts)
 - ightharpoonup Step 2a: residualize Y by subtracting initial predictions imes some very small positive number
 - ▶ Step 2b: fit a regression tree that is not very deep on the residualized *Y*s
 - Step 3: repeat steps 2a and 2b a hundred or so more times

Summary: Regression Trees and Random Forests

- Regression trees are an elegant prediction technique based on repeated binary splitting
 - ► The technique usually doesn't work that well in practice
- Random forests and gradient-boosted trees are ensemble methods that average the predictions of large numbers of regression trees to generate more robust predictions
 - In random forests, we estimate many independent regression trees, bootstrapping the sample for each tree and within each tree choosing a subset of predictors to consider at each split
 - ▶ In gradient-boosted trees, we update Y values before estimating each new tree, subtracting off a scaled-down version of the predicted values for the previous iteration

Lab #7

Objective: compare the predictive power of tree-based machine learning techniques using DHS data on the height-for-age z-scores of young children in Kenya (using the 2014 births recode)

Overview of the DHS

- Standard DHS surveys in multiple countries, conducted every 5–10 years in many
 - ▶ Representative of women aged 15–49 (i.e. of childbearing age)
 - Women asked about all pregnancies and births, detailed info on births in last 5 years
 - Children under 5 years old are weighed and measured
 - Random sample of women's husbands are also interviewed (in some countries/rounds)
- DHS births recode survey contains information on all births by surveyed women
 - Includes (most) data from survey of mother and most information about the household
 - Observations uniquely identified by combination of caseid and bidx
 - ▶ Data set includes deceased children, those born more than 5 years ago (for whom there is no information on either anthropometrics of birth outcomes), children of "visitors" to household
 - Information on variables is contained in separate text files

Lab #7: Steps

- R and Python templates read in births recode, restrict sample, estimate regression trees
 - Your main task is to start building a pipeline to use more of the variables in the DHS
- The templates implement a regression tree, bagging, and gradient-boosted trees
 - You need to adapt the bagging code to a random forest
 - You need to incorporate additional variables into the analysis