
Williams College ECON 370:

Data Science for Economic Analysis

Lecture 4: Numerical Approaches to OLS

Professor: Pamela Jakiela

There’s Nothing Ordinary About OLS

0

5

10

15

0 1 2 3 4 5
X

Y

Y = α+ βX

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 2

OLS Generates Predicted Values of Y

X1 X20

5

10

15

0 1 2 3 4 5
X

Y

ŷi = α̂+ β̂xi

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 4

OLS Coefficients Minimize the Sum of Squared Residuals

X1 X20

5

10

15

0 1 2 3 4 5
X

Y

ε̂i = yi − α̂− β̂xi

RSS =
∑

i ε̂
2
i

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 5

β̂ols Minimizes the Residual Sum of Squares (RSS)

−4

−2

0

2

4

−2 0 2
X

Y

(1)
OLS

Constant 1.98∗∗∗

(0.061)

RSS =
∑

i ε
2
i =

∑
i (yi − β̂xi)

2

⇔ ∂RSS
∂β =

∑
i 2(yi − β̂xi)xi =

∑
i 2yixi −

∑
i 2β̂x

2
i

Solving the first-order-condition for β̂:

∂RSS
∂β = 0 ⇔ β̂ols =

∑
i yixi/

∑
i x

2
i

Generalizes to bivariate OLS with a constant:

β̂ols =
COV (X ,Y)
VAR(X) =

∑
i yi (xi − x̄)/

∑
i (xi − x̄)2

Generalizes to multivariate regression case:

β̂ols = (X ′X)−1X ′Y

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 12

A Numerical Approach to OLS: Find the β that Minimizes RSS

−4

−2

0

2

4

−2 0 2
X

Y

(1)
OLS

Constant 1.98∗∗∗

(0.061)

RSS(β) =
∑

i [εi (β)]
2 =

∑
i [yi − (β)xi]

2

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 13

Grid Search

Simplest approach to choosing β:
calculate RSS(β) for a range of βs
(sufficiently widow search window),
choose β that yields lowest RSS

Grid search is computationally costly,
not feasible in many dimensions

Grid search can still be useful,
especially when objective function
is not smooth and/or convex or
parameters are near the boundaries

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 14

Golden Search

Suppose a < b < c , but
f (b) < f (a) and f (b) < f (c)

⇒ minimum is between a and c

Choose d between b and c

If f (d) > f (b), then
the minimum is between a and d

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 16

Golden Search

Suppose a < b < c , but
f (b) < f (a) and f (b) < f (c)

⇒ minimum is between a and c

Choose d between b and c

If f (d) > f (b), then
the minimum is between a and d

If f (d) < f (b), then
the minimum is between b and c

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 17

Golden Search

Why is it called Golden Search?

Optimal step size as a fraction of
distance from midpoint to far end:

3−
√
5

2 ≈ 0.382 (“the golden mean”)

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 18

Golden Search

Why is it called Golden Search?

Optimal step size as a fraction of
distance from midpoint to far end:

3−
√
5

2 ≈ 0.382 (“the golden mean”)

Stopping rule: when f (x) converges

Here, convergence means that
the optimal β is bounded in
a sufficiently narrow window

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 22

Gradient Descent

Use the slope (i.e. the gradient) to
to decide direction to go and how far

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 23

Gradient Descent

Use the slope (i.e. the gradient) to
to decide direction to go and how far

x1 = x0 − α [f ′(x0)]

Steps gets smaller and smaller as you
approach the minimum of RSS(β)

Importantly: generalizes to vector βs

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 29

Numerical Minimization in Multiple Dimensions

In multiple dimensions, algorithms define direction and step size, and convergence occurs when
subsequent values of the function being optimized are sufficiently close together (tolerance)

• Gradient descent: from an arbitrary starting point, steps in parameter space are
proportional to the gradient of the function (i.e. the vector of partial derivatives)

▶ Can be slow because it sometimes requires a large number of steps to reach convergence

• Newton’s method: from an arbitrary starting point, steps are minus one times the ratio
of the gradient to the Hessian (i.e. the matrix of second derivatives including cross partials)

▶ Can be slow because of the time required to calculate the Hessian

• Broyden-Fletcher-Goldfarb-Shanno (BFGS): a quasi-Newton method, similar to
Newton’s method but using a less computationally-intensive approximation of the Hessian

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 30

Summary

• OLS coefficients are chosen to minimize the RSS

• OLS can be framed as a numerical minimization problem

• We can find OLS coefficients using standard tools for numerical optimization

• Aside: OLS also solves the maximum likelihood estimation problem with normal residuals

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 31

Lab #4

The objective of this lab is to familiarize ourselves with: simulating data-generating processes,
the mechanics of linear regression (again!), defining functions, and numerical optimization

1. Simulate a data set

2. Run OLS

3. Calculate OLS coefficients “by hand” (using the formula) in the bivariate, no-constant case

4. Write a function to calculate the RSS and find β̂ols through grid search

5. Find β̂ols through numerical optimization by finding the minimum of RSS(β)

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 32

Numerical Minimization in Practice: Pseudo-Random Numbers

R:

set.seed(8675309)

A <- matrix(rnorm(4*3), 4, 3)

Python:

import numpy as np

np.random.seed(8675309)

B = np.random.randn(4, 3)


−0.996 1.065 0.572
0.721 0.987 0.903

−0.617 0.027 −1.549
2.029 0.672 1.022

A =


0.589 0.733 −1.162

−0.556 −0.772 −0.168
−0.416 −1.378 0.749
0.178 0.694 −1.978

B =

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 34

Numerical Minimization in Practice: Functions (RSS)

R:

RSS <- function(beta){
yhat <- X %*% beta

return(sum((Y - yhat)^2))

}

Python:

def RSS(beta):

yhat = X @ beta

return np.sum((Y - yhat) ** 2)

%*% and @ indicate matrix multiplication:[
a b c

]  d
e
f

 = [
ad + be + cf

]
=

1× 3

3× 1

1× 1

[
a b c
A B C

]  d
e
f

 = [
ad + be + cf
Ad + Be + Cf

]
=

2× 3
3× 1

2× 1

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 40

Numerical Minimization in Practice: Functions (RSS)

R:

RSS <- function(beta){
yhat <- X %*% beta

return(sum((Y - yhat)^2))

}

Python:

def RSS(beta):

yhat = X @ beta

return np.sum((Y - yhat) ** 2)

%*% and @ indicate matrix multiplication:
1 x11 x12
1 x21 x22
1 x31 x32
1 x41 x42


 β0

β1

β2

 = 
β0 + β1x11 + β2x12
β0 + β1x21 + β2x22
β0 + β1x31 + β2x32
β0 + β1x41 + β2x42

=


ŷ1
ŷ2
ŷ3
ŷ4

=

4× 3
3× 1

4× 1

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 42

Numerical Minimization in Practice: Numerical Optimization

R:

b0 <- rep(0, numvars + 1)

result <- optim(b0, RSS, method = "BFGS" control = list(maxit = 1e5))

Python:

from scipy.optimize import minimize

b0 = np.zeros(numvars + 1)

result = minimize(RSS, b0, method=’BFGS’, options=’maxiter’: int(1e5))

numerical optimization function

function to minimize

starting values of parameters

method

maximum number of iterations

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 49

