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Data Science for Economic Analysis

Lecture 4: Numerical Approaches to OLS

Professor: Pamela Jakiela
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There's Nothing Ordinary About OLS
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OLS Generates Predicted Values of Y
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OLS Coefficients Minimize the Sum of Squared Residuals
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Bols Minimizes the Residual Sum of Squares (RSS)

@)
OLS

Constant  1.98***

RSS = 3,62 = Y,y — Bxi)?
& 285 =320y — Bxi)xi = ;2% — 32,2657

Solving the first-order-condition for B:

QRSS =0« 50/5 = Z y,X,/ Z

Generalizes to bivariate OLS with a constant:
A COV(X,Y)
Boie = SN — 5y, — )/ X, — 22

Generalizes to multivariate regression case:

Bois = (X' X)1X'Y
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A Numerical Approach to OLS: Find the £ that Minimizes RSS

@)
OLS

Constant  1.98***

RSS(B) = Xoilei(B)? = il — (B)xil?

Residual Sum of Squares.

Value of p

2
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Grid Search

20000~ Simplest approach to choosing 5:
calculate RSS(B) for a range of (s
(sufficiently widow search window),

150001 choose 3 that yields lowest RSS

Grid search is computationally costly,
not feasible in many dimensions

10000 -

Residual Sum of Squares

Grid search can still be useful,
especially when objective function
is not smooth and/or convex or

o- . . parameters are near the boundaries

5000 -

Value of B
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Golden Search

Suppose a < b < ¢, but

| | / F(b) < (a) and F(b) < £(c)
15000~ = minimum is between a and ¢
2: Choose d between b and ¢
E 10000 - 1 :
3 E E If £(d) > f(b), then
€ ! a the minimum is between a and d

Value of B
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Golden Search

Suppose a < b < ¢, but
f(b) < f(a) and f(b) < f(c)

20000 -

= minimum is between a and ¢

15000 -

Choose d between b and ¢

10000 -

If f(d) > f(b), then
the minimum is between a and d

Residual Sum of Squares

5000 -

If f(d) < f(b), then
the minimum is between b and ¢

Value of B
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20000 -

Residual Sum of Squares

5000 -

15000 -

10000 -

Golden Search

Value of B
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Why is it called Golden Search?

Optimal step size as a fraction of
distance from midpoint to far end:

3*2—\/5 ~ 0.382 (“the golden mean")
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Golden Search

20000 -

15000 - \

10000 -

Why is it called Golden Search?

/ Optimal step size as a fraction of
distance from midpoint to far end:

3*2—‘/5 ~ 0.382 (“the golden mean")

Stopping rule: when f(x) converges

Residual Sum of Squares

5000 -

Here, convergence means that
the optimal 3 is bounded in
a sufficiently narrow window
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Value of B
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20000 -

Residual Sum of Squares

5000 -

15000 -

10000 -

Gradient Descent

Value of B

Economics 370 (Professor Jakiela)

Use the slope (i.e. the gradient) to
to decide direction to go and how far
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Gradient Descent

Use the slope (i.e. the gradient) to
to decide direction to go and how far

20000 -

15000 - X1 = X — « [f/(XO)]
Steps gets smaller and smaller as you
approach the minimum of RSS(f)

10000 -

Residual Sum of Squares

5000 -

Importantly: generalizes to vector Os

Value of B
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Numerical Minimization in Multiple Dimensions

In multiple dimensions, algorithms define direction and step size, and convergence occurs when
subsequent values of the function being optimized are sufficiently close together (tolerance)

® Gradient descent: from an arbitrary starting point, steps in parameter space are
proportional to the gradient of the function (i.e. the vector of partial derivatives)

» Can be slow because it sometimes requires a large number of steps to reach convergence

®* Newton’s method: from an arbitrary starting point, steps are minus one times the ratio
of the gradient to the Hessian (i.e. the matrix of second derivatives including cross partials)

» Can be slow because of the time required to calculate the Hessian

® Broyden-Fletcher-Goldfarb-Shanno (BFGS): a quasi-Newton method, similar to
Newton's method but using a less computationally-intensive approximation of the Hessian
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Summary

OLS coefficients are chosen to minimize the RSS
OLS can be framed as a numerical minimization problem
We can find OLS coefficients using standard tools for numerical optimization

Aside: OLS also solves the maximum likelihood estimation problem with normal residuals
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Lab #4

The objective of this lab is to familiarize ourselves with: simulating data-generating processes,
the mechanics of linear regression (again!), defining functions, and numerical optimization

1. Simulate a data set

2. Run OLS

3. Calculate OLS coefficients “by hand” (using the formula) in the bivariate, no-constant case
4. Write a function to calculate the RSS and find /3’0/5 through grid search

5. Find Bos through numerical optimization by finding the minimum of RSS(/3)
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Numerical Minimization in Practice: Pseudo-Random Numbers

R: —0.996 1.065 0.572
set.seed(8675309) A 0.721 0.987 0.903

—0.617 .027 —1.54
A <- matrix(rnorm(4x*3), 4, 3) 2829 8272 1822

Python: 0.589  0.733 —1.162
; —0.556 —0.772 —0.168
import numpy as n _

P Py @as np B= 1 _0416 —1378 0.749
np.random. seed (8675309) 0.178  0.694 —1.978

B = np.random.randn(4, 3)
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Numerical Minimization in Practice: Functions (RSS)

R: %*% and @ indicate matrix multiplication:
RSS <- function(beta){

yhat <- X %x% beta e

[a b c ] [d] = [ ad + be + cf |

1x3 p 1x1
return(sum((Y - yhat)~2))
} 3x1
Python: [ a b c ] d] { ad + be + cf
def RSS(beta): A B C f— Ad + Be + Cf
yhat = X @ beta 2x3 2x1
3x1

return np.sum((Y - yhat) **x 2)
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Numerical Minimization in Practice: Functions (RSS)

R:

RSS <- function(beta){
yhat <- X %x% beta
return(sum((Y - yhat)~2))

}

Python:

def RSS(beta):
yhat = X @ beta

return np.sum((Y - yhat) **x 2)

Economics 370 (Professor Jakiela)

T

%*% and @ indicate matrix multiplication:

X11 X12
X21 X22
X31 X32
X41  X42
4x3

Bo
Be

3x1
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[ Bo + Bixit + Boxiz
Bo + Pixa1 + Paxaz
Bo + Pixa1 + Baxs2
L Bo + Bixar + Paxaz
F
»
»

Va

4x1



Numerical Minimization in Practice: Numerical Optimization

R:
b0 <- rep(0, numvars + 1)

result <- optim( b0, RSS, method = "BFGS" control = list(maxit = 1le5) )

numerical optimization function

function to minimize

Python: starting values of parameters

method
maximum number of iterations

from scipy.optimize import minimize
b0 = np.zeros(numvars + 1)

result = minimize( RSS, b0, method=’BFGS’, options=’maxiter’: int(leb5) )
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