Williams College ECON 370:

Data Science for Economic Analysis

Lecture 4: Numerical Approaches to OLS

Professor: Pamela Jakiela

15-

10-

There's Nothing Ordinary About OLS

Y:Oé—i-,@X 4 °®

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 2

15-

10-

OLS Generates Predicted Values of Y

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 4

OLS Coefficients Minimize the Sum of Squared Residuals

15-
& =y — & — Bz;
10-
>
N
o
0 1 2 é 4 5
X

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 5

Bols Minimizes the Residual Sum of Squares (RSS)

@)
OLS

Constant 1.98***

RSS = 3,62 = Y,y — Bxi)?
& 285 =320y — Bxi)xi = ;2% — 32,2657

Solving the first-order-condition for B:

QRSS =0« 50/5 = Z y,X,/ Z

Generalizes to bivariate OLS with a constant:
A COV(X,Y)
Boie = SN — 5y, —)/ X, — 22

Generalizes to multivariate regression case:

Bois = (X' X)1X'Y

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 12

A Numerical Approach to OLS: Find the £ that Minimizes RSS

@)
OLS

Constant 1.98***

RSS(B) = Xoilei(B)? = il — (B)xil?

Residual Sum of Squares.

Value of p

2

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 13

Grid Search

20000~ Simplest approach to choosing 5:
calculate RSS(B) for a range of (s
(sufficiently widow search window),

150001 choose 3 that yields lowest RSS

Grid search is computationally costly,
not feasible in many dimensions

10000 -

Residual Sum of Squares

Grid search can still be useful,
especially when objective function
is not smooth and/or convex or

o- . . parameters are near the boundaries

5000 -

Value of B

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 14

Golden Search

Suppose a < b < ¢, but

| | / F(b) < (a) and F(b) < £(c)
15000~ = minimum is between a and ¢
2: Choose d between b and ¢
E 10000 - 1 :
3 E E If £(d) > f(b), then
€ ! a the minimum is between a and d

Value of B

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 16

Golden Search

Suppose a < b < ¢, but
f(b) < f(a) and f(b) < f(c)

20000 -

= minimum is between a and ¢

15000 -

Choose d between b and ¢

10000 -

If f(d) > f(b), then
the minimum is between a and d

Residual Sum of Squares

5000 -

If f(d) < f(b), then
the minimum is between b and ¢

Value of B

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 17

20000 -

Residual Sum of Squares

5000 -

15000 -

10000 -

Golden Search

Value of B

Economics 370 (Professor Jakiela)

Why is it called Golden Search?

Optimal step size as a fraction of
distance from midpoint to far end:

3*2—\/5 ~ 0.382 (“the golden mean")

Lecture 4: OLS, Slide 18

Golden Search

20000 -

15000 - \

10000 -

Why is it called Golden Search?

/ Optimal step size as a fraction of
distance from midpoint to far end:

3*2—‘/5 ~ 0.382 (“the golden mean")

Stopping rule: when f(x) converges

Residual Sum of Squares

5000 -

Here, convergence means that
the optimal 3 is bounded in
a sufficiently narrow window

A
i
&)

&
°
)
2

Value of B

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 22

20000 -

Residual Sum of Squares

5000 -

15000 -

10000 -

Gradient Descent

Value of B

Economics 370 (Professor Jakiela)

Use the slope (i.e. the gradient) to
to decide direction to go and how far

Lecture 4: OLS, Slide 23

Gradient Descent

Use the slope (i.e. the gradient) to
to decide direction to go and how far

20000 -

15000 - X1 = X — « [f/(XO)]
Steps gets smaller and smaller as you
approach the minimum of RSS(f)

10000 -

Residual Sum of Squares

5000 -

Importantly: generalizes to vector Os

Value of B

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 29

Numerical Minimization in Multiple Dimensions

In multiple dimensions, algorithms define direction and step size, and convergence occurs when
subsequent values of the function being optimized are sufficiently close together (tolerance)

® Gradient descent: from an arbitrary starting point, steps in parameter space are
proportional to the gradient of the function (i.e. the vector of partial derivatives)

» Can be slow because it sometimes requires a large number of steps to reach convergence

®* Newton’s method: from an arbitrary starting point, steps are minus one times the ratio
of the gradient to the Hessian (i.e. the matrix of second derivatives including cross partials)

» Can be slow because of the time required to calculate the Hessian

® Broyden-Fletcher-Goldfarb-Shanno (BFGS): a quasi-Newton method, similar to
Newton's method but using a less computationally-intensive approximation of the Hessian

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 30

Summary

OLS coefficients are chosen to minimize the RSS
OLS can be framed as a numerical minimization problem
We can find OLS coefficients using standard tools for numerical optimization

Aside: OLS also solves the maximum likelihood estimation problem with normal residuals

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 31

Lab #4

The objective of this lab is to familiarize ourselves with: simulating data-generating processes,
the mechanics of linear regression (again!), defining functions, and numerical optimization

1. Simulate a data set

2. Run OLS

3. Calculate OLS coefficients “by hand” (using the formula) in the bivariate, no-constant case
4. Write a function to calculate the RSS and find /3’0/5 through grid search

5. Find Bos through numerical optimization by finding the minimum of RSS(/3)

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 32

Numerical Minimization in Practice: Pseudo-Random Numbers

R: —0.996 1.065 0.572
set.seed(8675309) A 0.721 0.987 0.903

—0.617 .027 —1.54
A <- matrix(rnorm(4x*3), 4, 3) 2829 8272 1822

Python: 0.589 0.733 —1.162
; —0.556 —0.772 —0.168
import numpy as n _

P Py @as np B= 1 _0416 —1378 0.749
np.random. seed (8675309) 0.178 0.694 —1.978

B = np.random.randn(4, 3)

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 34

Numerical Minimization in Practice: Functions (RSS)

R: %*% and @ indicate matrix multiplication:
RSS <- function(beta){

yhat <- X %x% beta e

[a b c] [d] = [ad + be + cf |

1x3 p 1x1
return(sum((Y - yhat)~2))
} 3x1
Python: [a b c] d] { ad + be + cf
def RSS(beta): A B C f— Ad + Be + Cf
yhat = X @ beta 2x3 2x1
3x1

return np.sum((Y - yhat) **x 2)

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 40

Numerical Minimization in Practice: Functions (RSS)

R:

RSS <- function(beta){
yhat <- X %x% beta
return(sum((Y - yhat)~2))

}

Python:

def RSS(beta):
yhat = X @ beta

return np.sum((Y - yhat) **x 2)

Economics 370 (Professor Jakiela)

T

%*% and @ indicate matrix multiplication:

X11 X12
X21 X22
X31 X32
X41 X42
4x3

Bo
Be

3x1

Lecture 4: OLS, Slide 42

[Bo + Bixit + Boxiz
Bo + Pixa1 + Paxaz
Bo + Pixa1 + Baxs2
L Bo + Bixar + Paxaz
F
»
»

Va

4x1

Numerical Minimization in Practice: Numerical Optimization

R:
b0 <- rep(0, numvars + 1)

result <- optim(b0, RSS, method = "BFGS" control = list(maxit = 1le5))

numerical optimization function

function to minimize

Python: starting values of parameters

method
maximum number of iterations

from scipy.optimize import minimize
b0 = np.zeros(numvars + 1)

result = minimize(RSS, b0, method=’BFGS’, options=’maxiter’: int(leb5))

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 49

