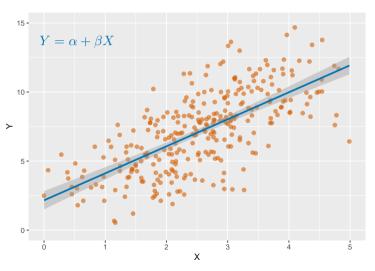
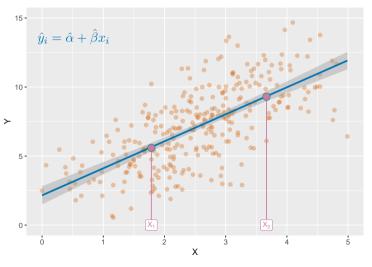


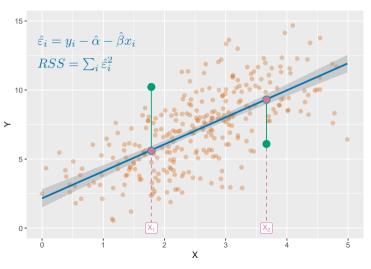
There's Nothing Ordinary About OLS



OLS Generates Predicted Values of Y



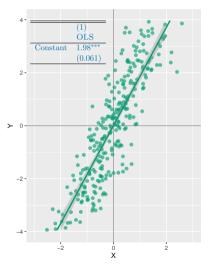
OLS Coefficients Minimize the Sum of Squared Residuals



Economics 370 (Professor Jakiela)

Lecture 4: OLS, Slide 5

$\hat{\beta}_{ols}$ Minimizes the Residual Sum of Squares (RSS)



$$RSS = \sum_{i} \varepsilon_{i}^{2} = \sum_{i} (y_{i} - \hat{\beta}x_{i})^{2}$$

$$\Leftrightarrow \frac{\partial RSS}{\partial \beta} = \sum_{i} 2(y_{i} - \hat{\beta}x_{i})x_{i} = \sum_{i} 2y_{i}x_{i} - \sum_{i} 2\hat{\beta}x_{i}^{2}$$

Solving the first-order-condition for $\hat{\beta}$:

$$rac{\partial \textit{RSS}}{\partial eta} = 0 \Leftrightarrow \hat{eta}_{\textit{ols}} = \sum_{i} y_{i} x_{i} / \sum_{i} x_{i}^{2}$$

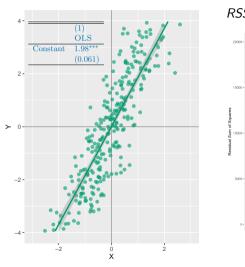
Generalizes to bivariate OLS with a constant:

$$\hat{\beta}_{ols} = \frac{COV(X,Y)}{VAR(X)} = \sum_i y_i (x_i - \bar{x}) / \sum_i (x_i - \bar{x})^2$$

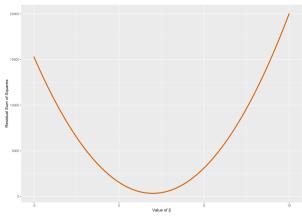
Generalizes to multivariate regression case:

$$\hat{\beta}_{ols} = (X'X)^{-1}X'Y$$

A Numerical Approach to OLS: Find the β that Minimizes RSS



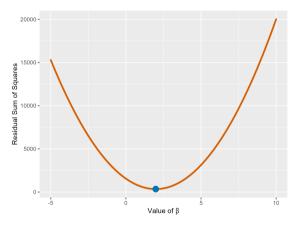
$$RSS(\beta) = \sum_{i} [\varepsilon_{i}(\beta)]^{2} = \sum_{i} [y_{i} - (\beta)x_{i}]^{2}$$



Economics 370 (Professor Jakiela)

Lecture 4: OLS, Slide 13

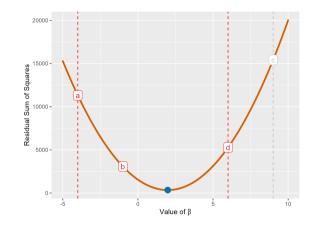
Grid Search



Simplest approach to choosing β : calculate $RSS(\beta)$ for a range of β s (sufficiently widow search window), choose β that yields lowest RSS

Grid search is computationally costly, not feasible in many dimensions

Grid search can still be useful, especially when objective function is not smooth and/or convex or parameters are near the boundaries

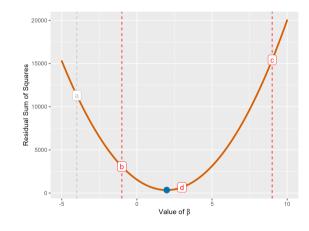


Suppose
$$a < b < c$$
, but $f(b) < f(a)$ and $f(b) < f(c)$

 \Rightarrow minimum is between a and c

Choose d between b and c

If f(d) > f(b), then the minimum is between a and d



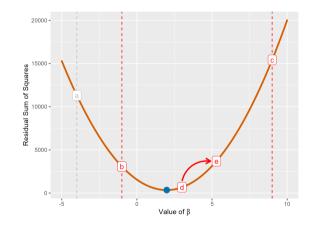
Suppose
$$a < b < c$$
, but $f(b) < f(a)$ and $f(b) < f(c)$

 \Rightarrow minimum is between a and c

Choose d between b and c

If f(d) > f(b), then the minimum is between a and d

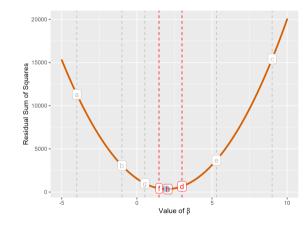
If f(d) < f(b), then the minimum is between b and c



Why is it called Golden Search?

Optimal step size as a fraction of distance from midpoint to far end:

$$\frac{3-\sqrt{5}}{2}\approx 0.382$$
 ("the golden mean")



Why is it called Golden Search?

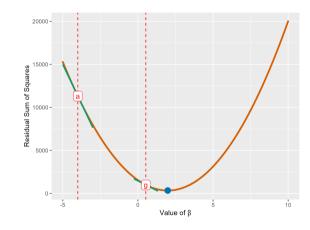
Optimal step size as a fraction of distance from midpoint to far end:

$$\frac{3-\sqrt{5}}{2}\approx 0.382$$
 ("the golden mean")

Stopping rule: when f(x) converges

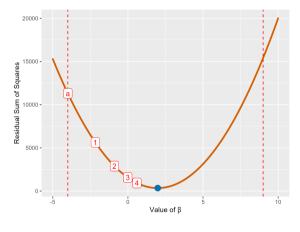
Here, **convergence** means that the optimal β is bounded in a sufficiently narrow window

Gradient Descent



Use the slope (i.e. the **gradient**) to to decide direction to go and how far

Gradient Descent



Use the slope (i.e. the **gradient**) to to decide direction to go and how far

$$x_1 = x_0 - \alpha [f'(x_0)]$$

Steps gets smaller and smaller as you approach the minimum of $RSS(\beta)$

Importantly: generalizes to vector β s

Numerical Minimization in Multiple Dimensions

In multiple dimensions, algorithms define direction and step size, and convergence occurs when subsequent values of the function being optimized are sufficiently close together (tolerance)

- **Gradient descent:** from an arbitrary starting point, steps in parameter space are proportional to the gradient of the function (i.e. the vector of partial derivatives)
 - Can be slow because it sometimes requires a large number of steps to reach convergence
- **Newton's method:** from an arbitrary starting point, steps are minus one times the ratio of the gradient to the Hessian (i.e. the matrix of second derivatives including cross partials)
 - ► Can be slow because of the time required to calculate the Hessian
- Broyden-Fletcher-Goldfarb-Shanno (BFGS): a quasi-Newton method, similar to Newton's method but using a less computationally-intensive approximation of the Hessian

Summary

- OLS coefficients are chosen to minimize the RSS
- OLS can be framed as a numerical minimization problem
- We can find OLS coefficients using standard tools for numerical optimization
- Aside: OLS also solves the maximum likelihood estimation problem with normal residuals

Lab #4

The objective of this lab is to familiarize ourselves with: simulating data-generating processes, the mechanics of linear regression (again!), defining functions, and numerical optimization

- 1. Simulate a data set
- 2. Run OLS
- 3. Calculate OLS coefficients "by hand" (using the formula) in the bivariate, no-constant case
- 4. Write a function to calculate the RSS and find \hat{eta}_{ols} through grid search
- 5. Find $\hat{\beta}_{ols}$ through numerical optimization by finding the minimum of $RSS(\beta)$

Numerical Minimization in Practice: Pseudo-Random Numbers

$$A = \begin{bmatrix} -0.996 & 1.065 & 0.572 \\ 0.721 & 0.987 & 0.903 \\ -0.617 & 0.027 & -1.549 \\ 2.029 & 0.672 & 1.022 \end{bmatrix}$$

Python: import numpy as np np.random.seed(8675309)

$$B = \begin{bmatrix} 0.589 & 0.733 & -1.162 \\ -0.556 & -0.772 & -0.168 \\ -0.416 & -1.378 & 0.749 \\ 0.178 & 0.694 & -1.978 \end{bmatrix}$$

Numerical Minimization in Practice: Functions (RSS)

```
R:
RSS <- function(beta){
    vhat <- X %*% beta
    return(sum((Y - yhat)^2))
Python:
def RSS(beta):
    vhat = X @ beta
    return np.sum((Y - yhat) ** 2)
```

%*% and @ indicate matrix multiplication:

$$\begin{bmatrix} a & b & c \\ 1 \times 3 \end{bmatrix} \begin{bmatrix} d \\ e \\ f \end{bmatrix} = \begin{bmatrix} ad + be + cf \\ 1 \times 1 \end{bmatrix}$$

$$3 \times 1$$

$$\begin{bmatrix} a & b & c \\ A & B & C \end{bmatrix} \begin{bmatrix} d \\ e \\ f \end{bmatrix} = \begin{bmatrix} ad + be + cf \\ Ad + Be + Cf \end{bmatrix}$$

$$2 \times 3$$

$$3 \times 1$$

Numerical Minimization in Practice: Functions (RSS)

```
R:
                            **% and @ indicate matrix multiplication:
RSS <- function(beta){
  4 \times 3
Python:
def RSS(beta):
   vhat = X @ beta
                                           4 \times 1
   return np.sum((Y - yhat) ** 2)
```

Numerical Minimization in Practice: Numerical Optimization

```
R:
b0 <- rep(0, numvars + 1)
result <- optim( b0, RSS, method = "BFGS" control = list(maxit = 1e5) )
                                              numerical optimization function
                                              function to minimize
                                              starting values of parameters
Python:
                                              method
from scipy.optimize import minimize
                                              maximum number of iterations
b0 = np.zeros(numvars + 1)
result = minimize( RSS, b0, method='BFGS', options='maxiter': int(1e5) )
```