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There’s Nothing Ordinary About OLS
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OLS Generates Predicted Values of Y
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OLS Coefficients Minimize the Sum of Squared Residuals
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β̂ols Minimizes the Residual Sum of Squares (RSS)
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Solving the first-order-condition for β̂:

∂RSS
∂β = 0 ⇔ β̂ols =

∑
i yixi/

∑
i x

2
i

Generalizes to bivariate OLS with a constant:

β̂ols =
COV (X ,Y )
VAR(X ) =

∑
i yi (xi − x̄)/

∑
i (xi − x̄)2

Generalizes to multivariate regression case:

β̂ols = (X ′X )−1X ′Y

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 12



A Numerical Approach to OLS: Find the β that Minimizes RSS
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Grid Search

Simplest approach to choosing β:
calculate RSS(β) for a range of βs
(sufficiently widow search window),
choose β that yields lowest RSS

Grid search is computationally costly,
not feasible in many dimensions

Grid search can still be useful,
especially when objective function
is not smooth and/or convex or
parameters are near the boundaries
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Golden Search

Suppose a < b < c , but
f (b) < f (a) and f (b) < f (c)

⇒ minimum is between a and c

Choose d between b and c

If f (d) > f (b), then
the minimum is between a and d
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Golden Search

Suppose a < b < c , but
f (b) < f (a) and f (b) < f (c)

⇒ minimum is between a and c

Choose d between b and c

If f (d) > f (b), then
the minimum is between a and d

If f (d) < f (b), then
the minimum is between b and c
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Golden Search

Why is it called Golden Search?

Optimal step size as a fraction of
distance from midpoint to far end:

3−
√
5

2 ≈ 0.382 (“the golden mean”)
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Golden Search

Why is it called Golden Search?

Optimal step size as a fraction of
distance from midpoint to far end:

3−
√
5

2 ≈ 0.382 (“the golden mean”)

Stopping rule: when f (x) converges

Here, convergence means that
the optimal β is bounded in
a sufficiently narrow window

Economics 370 (Professor Jakiela) Lecture 4: OLS, Slide 22



Gradient Descent

Use the slope (i.e. the gradient) to
to decide direction to go and how far
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Gradient Descent

Use the slope (i.e. the gradient) to
to decide direction to go and how far

x1 = x0 − α [f ′(x0)]

Steps gets smaller and smaller as you
approach the minimum of RSS(β)

Importantly: generalizes to vector βs
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Numerical Minimization in Multiple Dimensions

In multiple dimensions, algorithms define direction and step size, and convergence occurs when
subsequent values of the function being optimized are sufficiently close together (tolerance)

• Gradient descent: from an arbitrary starting point, steps in parameter space are
proportional to the gradient of the function (i.e. the vector of partial derivatives)

▶ Can be slow because it sometimes requires a large number of steps to reach convergence

• Newton’s method: from an arbitrary starting point, steps are minus one times the ratio
of the gradient to the Hessian (i.e. the matrix of second derivatives including cross partials)

▶ Can be slow because of the time required to calculate the Hessian

• Broyden-Fletcher-Goldfarb-Shanno (BFGS): a quasi-Newton method, similar to
Newton’s method but using a less computationally-intensive approximation of the Hessian
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Summary

• OLS coefficients are chosen to minimize the RSS

• OLS can be framed as a numerical minimization problem

• We can find OLS coefficients using standard tools for numerical optimization

• Aside: OLS also solves the maximum likelihood estimation problem with normal residuals
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Lab #4

The objective of this lab is to familiarize ourselves with: simulating data-generating processes,
the mechanics of linear regression (again!), defining functions, and numerical optimization

1. Simulate a data set

2. Run OLS

3. Calculate OLS coefficients “by hand” (using the formula) in the bivariate, no-constant case

4. Write a function to calculate the RSS and find β̂ols through grid search

5. Find β̂ols through numerical optimization by finding the minimum of RSS(β)
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Numerical Minimization in Practice: Pseudo-Random Numbers

R:

set.seed(8675309)

A <- matrix(rnorm(4*3), 4, 3)

Python:

import numpy as np

np.random.seed(8675309)

B = np.random.randn(4, 3)


−0.996 1.065 0.572
0.721 0.987 0.903

−0.617 0.027 −1.549
2.029 0.672 1.022

A =


0.589 0.733 −1.162

−0.556 −0.772 −0.168
−0.416 −1.378 0.749
0.178 0.694 −1.978

B =
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Numerical Minimization in Practice: Functions (RSS)

R:

RSS <- function(beta){
yhat <- X %*% beta

return(sum((Y - yhat)^2))

}

Python:

def RSS(beta):

yhat = X @ beta

return np.sum((Y - yhat) ** 2)

%*% and @ indicate matrix multiplication:[
a b c

]  d
e
f

 = [
ad + be + cf

]
=

1× 3

3× 1

1× 1

[
a b c
A B C

]  d
e
f

 = [
ad + be + cf
Ad + Be + Cf

]
=

2× 3
3× 1

2× 1
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Numerical Minimization in Practice: Functions (RSS)

R:

RSS <- function(beta){
yhat <- X %*% beta

return(sum((Y - yhat)^2))

}

Python:

def RSS(beta):

yhat = X @ beta

return np.sum((Y - yhat) ** 2)

%*% and @ indicate matrix multiplication:
1 x11 x12
1 x21 x22
1 x31 x32
1 x41 x42


 β0

β1

β2

 = 
β0 + β1x11 + β2x12
β0 + β1x21 + β2x22
β0 + β1x31 + β2x32
β0 + β1x41 + β2x42

=


ŷ1
ŷ2
ŷ3
ŷ4

=

4× 3
3× 1

4× 1
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Numerical Minimization in Practice: Numerical Optimization

R:

b0 <- rep(0, numvars + 1)

result <- optim( b0, RSS, method = "BFGS" control = list(maxit = 1e5) )

Python:

from scipy.optimize import minimize

b0 = np.zeros(numvars + 1)

result = minimize( RSS, b0, method=’BFGS’, options=’maxiter’: int(1e5) )

numerical optimization function

function to minimize

starting values of parameters

method

maximum number of iterations
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