

Reading in Text as Data

When we load text, it is often in a character vector with lines or paragraphs as observations

Example:

. . .

```
1 I'm alone, yeah, I don't know if I can face the night
2 I'm in tears and the cryin' that I do is for you
3 I want your love
4 Let's break the walls between us
5 Don't make it tough
6 I'll put away my pride
7 Enough's enough
8 I've suffered and I've seen the light
9 Baby, you're my angel
```

Data is not clean/tidy in the sense of being one observation per row - what is an observation?

Tokenization

To analyze text data, we typically break it into tokens, most often single words

wo	words				
1	i'm				
2	alone				
3	yeah				
4	i				
5	don't				
6	know				
7	if				
8	i				

Tokenization

To analyze text data, we typically break it into tokens, most often single words or n-grams

words (1-grams)		bi	bigrams (2-grams)		trigrams (3-grams)	
1	i'm	1	i'm alone	1	i'm alone yeah	
2	alone	2	alone yeah	2	alone yeah i	
3	yeah	3	yeah i	3	yeah i don't	
4	i	4	i don't	4	i don't know	
5	don't	5	don't know	5	don't know if	
6	know	6	know if	6	know if i	
7	if	7	if i	7	if i can	
8	i	8	i can	8	i can face	

A Simple Text as Data Pipeline

Term Frequencies

words in order word counts					
1	i'm		1	and	17
2	alone		2	come	14
3	yeah		3	me	12
4	i		4	you're	11
5	don't	\Rightarrow	5	save	10
6	know		6	tonight	10
7	if		7	i	9
8	i		8	my	9
9	can		9	angel	8

Stop Words

Stop words are widely used words that are unlikely to distinguish a text/document

- Examples: a, an, the, and, but, or, of, to, from, by, is, are, was, be, he, she, it, they, them
 - Importantly, there are cases where stop words do convey important meaning (gender, author)
- We call them stop words because we (sometimes) filter them out (i.e. we stop them)

There are many lists of stop words, including (different) defaults in R and Python

- · Choose a stop word list that makes sense in your specific context
- We often want to add task-specific stop words (e.g. economics, estimate, find, show)

Distinguishing Angel from Angel

Angel by A	erosmith	Angel by S	haggy
and	17	my	37
come	14	you're	30
me	12	angel	20
you're	11	you	17
save	10	girl	14
tonight	10	me	11
i	9	when	11
my	9	darling	10
angel	8	i	9
the	7	and	8

Economics 370: Data Science for Economics (Professor Jakiela)

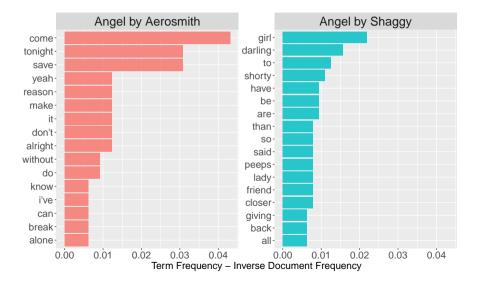
Distinguishing Angel from Angel: Removing Stop Words

Angel by A	erosmith	Angel by	Shaggy
come	0.062	angel	0.045
save	0.044	girl	0.032
tonight	0.044	darling	0.023
angel	0.036	shorty	0.016
baby	0.022	baby	0.011
alright	0.018	closer	0.011
make	0.018	friend	0.011
reason	0.018	lady	0.011
yeah	0.018	need	0.011
love	0.013	peeps	0.011
without	0.013	said	0.011

Economics 370: Data Science for Economics (Professor Jakiela) Text a

Term Frequency – Inverse Document Frequency (TFIDF)

Some words appear a lot in all (or most) documents within a particular corpus


- Example: angel, baby (or, in other contexts, economics or find)
- Such words do not help us distinguish between documents in the corpus

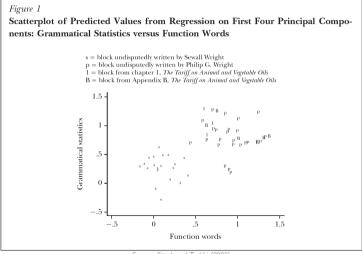
Using **term frequency** – **inverse document frequency (tfidf)** we can identify words that allow us to better distinguish between documents (or distinct classes/groups of documents)

- Term frequency (tf) for word x in document *i*: number of times word x appears in document *i* / number of words in *i* in document *i*
- **Document frequency (df)** for word *x*: number of documents that contain *x* / number of documents in corpus
- **TFIDF** for word x in document i: term frequency $\times \ln(1 / \text{document frequency})$

We say document frequency, but we might also think of class/group frequency

TFIDF: Aerosmith vs. Shaggy

The Purpose of Text as Data Analysis


Word-level analysis: dictionary methods

- Calculate document-level statistics based on word-level variables (e.g. sentiment)
 - Is Aerosmith's Angel more negative than Shaggy's Angel?
- Construct statistics capturing content of document (e.g. policy uncertainty)

Construct document-level variables based on the frequency with which different words are used

- Can we predict whether a song is by Aerosmith or Shaggy based on the words used?
- Use word frequencies, etc., as variables or use dimension reduction (supervised learning)
- Identify underlying groups in the corpus (unsupervised learning)

Text Analysis and the Mystery of Instrumental Variables

Source: Stock and Trebbi (2003)

Lab #10

Data set of N = 219 National Bureau of Economic Research (NBER) working papers

- From two mutually exclusive NBER programs: Asset Pricing and Children and Families
- Data set contains titles, authors, publication dates, abstracts, keywords

Objective: identify words that distinguish between papers in the two fields/programs