11 Monopoly and Equilibrium

11.1 Aggregate Demand

- A simple model of demand when consumers are heterogeneous:
- Population of N consumer's indexed by i
- Consumer i 's utility depends on two things:
- The amount of money (dollars) that they hold, $d_{i} \in \boldsymbol{R}_{+}$
- whether or not they own one unit of a(n indivisible) good, $x_{i} \in\{0,1\}$
- Consumer i 's valuation of the indivisible good x is $v_{i} \in\left[0, v^{\max }\right]$, and overall utility is given by:

$$
\begin{equation*}
u_{i}\left(d_{i}, x_{i}\right)=d_{i}+v_{i} x_{i} \tag{1}
\end{equation*}
$$

So, if $x_{i}=0$, utility is simply the number of dollars that consumer i has, d_{i}, but if $x_{i}=1$, utility is the sum of dollars held and individual i 's valuation of the indivisible good.

- We assume that d_{i} is large enough that a consumer who does not have the good is able to purchase it. In other words, individuals are not "liquidity constrained."
- Let d_{0} denote initial wealth. Individual i prefers to purchase the good at price $p>0$ whenever:

$$
\begin{equation*}
d_{0}-p+v_{i} \geq d_{0} \Leftrightarrow v_{i} \geq p \tag{2}
\end{equation*}
$$

which does not depend on d_{0} (so there is no need to worry about whether d_{0} needs to be indexed by i).

- Suppose individual valuations v_{i} are uniformly distributed on the interval $\left[0, v^{\max }\right]$. So v_{i} can take on any value such that $0 \leq v_{i} \leq v_{\max }$, and all values in that range are equally likely.
- If this assumption is true, than for any possible price $p>0$, the monopolist knows what fraction of the population will be willing to purchase the good, and
hence what total demand for the good will be as a function of price.

$$
\begin{align*}
\operatorname{Pr}(\text { buy }) & =\operatorname{Pr}\left(v_{i}>p\right) \\
& =1-\operatorname{Pr}\left(v_{i} \leq p\right) \tag{3}\\
& =1-\frac{p}{v^{\max }}
\end{align*}
$$

- If there are N people in the population, total demand for the indivisible good at price p is

$$
\begin{equation*}
D(p)=N-\frac{N p}{v^{\max }} \tag{4}
\end{equation*}
$$

for $0 \leq p \leq v^{\max } ; D(p)=0$ for $p>v^{\max }$.

- Thus, we can think of the situation where demand is linear with $D(p)=a-b p$ as a way of representing an economy where each consumer decides whether to buy one unit of an indivisible good.
- When demand is linear, we can also invert the demand function to arrive at the inverse demand function:

$$
\begin{equation*}
P(q)=\frac{a}{b}-\left(\frac{1}{b}\right) q \tag{5}
\end{equation*}
$$

where $P(q)$ indicates the market-clearing price if the producer wants to sell q units of output.

- In this framework, individual utility is given by Equation 11, so $v_{i}-p$ is a measure of the welfare of any individual who purchases the good:

$$
\begin{align*}
w_{i} & =u_{i}(\text { buy })-u_{i}(\text { don't buy }) \\
& =d_{0}-p+v_{i}-d_{0} \tag{6}\\
& =v_{i}-p
\end{align*}
$$

- The area between the demand curve and the price is thus a measure of overall (consumer) wellbeing which we term consumer surplus:

$$
\begin{equation*}
C S=\int_{0}^{q}[P(q)-p] d x \tag{7}
\end{equation*}
$$

11.2 Monopoly

- A monopolist is the sole producer or provider of a good
- A monopoly is a marlet with only one producer or supplier
- In a monopoly, the producer decides how much to produce, but when she faces a downward-sloping demand curve, selling more means that she must charge a lower
price for each unit sold ${ }^{11}$
- A monopolist's revenues are:

$$
\begin{equation*}
R(q)=[P(q)] q \Rightarrow \frac{\partial R(q)}{\partial q}=P(q)+q \cdot \partial P(q) \partial q \tag{8}
\end{equation*}
$$

- A monopolist differs from the price-taking producer we discussed in the previous unit: for a price-taker, marginal revenue is always equal to p
- The second term in Equation 8 is absent because the price-taker does not need to lower the price of all inframarginal units in order to sell the one marginal unit

11.2.1 The Monopolist's Profit-Maximization Problem

- A profit-maximizing uniform-price monopolist solves

$$
\begin{equation*}
\max _{q \geq 0}[P(q)] q-c(q) \tag{9}
\end{equation*}
$$

yielding the first-order condition:

$$
\begin{equation*}
P(q)+q \cdot \partial P(q) \partial q-\frac{\partial c(q)}{\partial q}=0 \tag{10}
\end{equation*}
$$

- A the profit-maximizing level of output, marginal revenue equals marginal cost
- Example: $P(q)=1-q$ and $c(q)=q^{2}$

$$
\begin{aligned}
& \Rightarrow R(q)=q-q^{2} \\
& \Rightarrow \pi(q)=R(q)-c(q)=q-2 q^{2} \\
& \Rightarrow \frac{\partial \pi(q)}{\partial q}=0 \Leftrightarrow 1-4 q^{*}=0 \Leftrightarrow q^{*}=\frac{1}{4}
\end{aligned}
$$

[^0]

- The profit-maximizing monopolist sets $q^{M}=1 / 4$
- In contrast, a price-taking producer would set choose q^{*} so that $p=M C\left(q^{*}\right)$, so the producer's marginal cost curve is her supply curve
- In this context, monopoly is inefficient: we can make some people better off without making anyone worse off (if we let the monopolist sell to the buyer with valuations between p^{M} and p^{M} without changing they price she charges the other buyers)
- This is what we refer to as the deadweight loss of monopoly (not just that the producer is getting more profits/surplus and the consumers are getting less)
- First-degree price discrimination
- Second and third degree price discrimination

11.3 Competitive Equilibrium

- Consider the indivisible good setup described before: consumer i 's valuation of an indivisible good x is $v_{i} \in\left[0, v^{\max }\right]$, and overall utility is given by:

$$
\begin{equation*}
u_{i}\left(d_{i}, x_{i}\right)=d_{i}+v_{i} x_{i} \tag{11}
\end{equation*}
$$

where x_{i} is a dummy variable (either 0 or 1) indicating whether the consumer owns a single unit of the good

- There are 12 people in the economy: 6 potential sellers who own one unit of the good each, and 6 potential buyers who do not own a unit of the good
- The valuations of the potential sellers are:

ID	v_{i}
S1	1
S2	1
S3	2
S4	3
S5	5
S6	8

- The valuations of the potential buyers are:

ID	v_{i}
B1	1
B2	1
B3	2
B4	3
B5	5
B6	8

- In contrast to (most of) the models we've studied before, we now have a situation involving multiple people, and we'd like to make a prediction about what will happen when they interact
- A competitive equilibrium is a way that we can make a prediction about the result of an interaction between individuals or firms: we can predict that the market will be stable at a price, p that "clears the market" such that demand equals supply
- Can we find an equilibrium price? Assume that if a buyer is indifferent, she buys, and if a seller is indifferent, she sells.

Price	Buyers	Sellers
1	6	2
2	4	3
2.5	3	3
3	3	4

- The price 2.50 clears the market, as would any price $2<p<3$

- The price that clears the market is where the supply curve intersects the demand curve
- In this example, there are equal numbers of potential buyers and potential sellers, and the distribution of valuations is the same in both groups
- This need not be the case: what price would clear the market if we added two additional potential buyers with valuations 13 and 21?
- In this setup, when there are z units of the good available, the market clearing price must fall between valuations v_{z} and v_{z+1} if we ordered them
- The implication of this is that, in a competitive equilibrium, the individuals who most value the good will end up with it
- Is competitive equilibrium realistic?
- We haven't said anything about how these transactions take place: what if Buyer B6 walked into the mall and the first store he saw belonged to seller S1? What price might they agree on?
- One important requirement for competitive equilibrium is that no buyer or seller be large enough to influence the market price (unlike a monopolist)
- But we also need perfect information for all parties: there cannot be any uncertainty about the quality of the good, and buyers and sellers need to have a pretty good sense of the distribution of valuations unless there is an auctioneer or some other type of market maker
- Market experiments

11.4 Linear Supply and Linear Demand

- We've already derived conditions under which it is reasonable to represent market demand as $D(p)=a-b p$
- We can also represent aggregate supply as $S(p)=d p$
- We can model heterogeneous agents, as in the case of demand, deciding whether or not to sell their single unit of an indivisible good
- Alternatively, if all producers are small and act as price-takers, we've seen that each producer's individual supply function is their marginal cost curve
- Aggregating multiple linear marginal cost functions (if the cost function itself is quadratic) will also result in a linear demand function that passes through the origin
- We can characterize the competitive equilibrium as the price that solves $D\left(p^{*}\right)=$ $S\left(p^{*}\right)$, together with the resulting level of output, q^{*}

[^0]: ${ }^{1}$ Unless she can engage in some type of price discrimination, which we will discuss later.

