

Choices suggest that:

 $A \succ B$ and $B \succ A$

We've been assuming consumer have preferences that are complete, transitive, monotone, convex, etc.

Sometimes data on choices tells us that we're wrong

Economics 251 (Professor Jakiela)

Rationality in Dictator Games, Slide 2

The Weak Axiom of Reveled Preference

The Weak Axiom of Reveled Preference (WARP):

If $x = (x_1, x_2)$ is revealed directly preferred to $y = (y_1, y_2)$ then y cannot also be revealed directly preferred to x (unless x and y are the same consumption bundle)

If choices violate WARP, consumer is not maximizing utility

Economics 251 (Professor Jakiela)

Checking WARP

2 bundles:

$$A = (a_1, a_2)$$
 and $B = (b_1, b_2)$

Economics 251 (Professor Jakiela)

Pationality in Dictator Camps Slide 2

Checking WARP

2 bundles:

$$A = (a_1, a_2)$$
 and $B = (b_1, b_2)$

2 sets of prices, budget sizes:

$$p^{A} = (p_{1}^{A}, p_{2}^{A}), p^{B} = (p_{1}^{B}, p_{2}^{B})$$

Economics 251 (Professor Jakiela)

Checking WARP

2 bundles:

$$A = (a_1, a_2)$$
 and $B = (b_1, b_2)$

2 sets of prices, budget sizes:

$$p^{A} = (p_{1}^{A}, p_{2}^{A}), p^{B} = (p_{1}^{B}, p_{2}^{B})$$

Bundles on the budget lines:

$$p_1^A a_1 + p_2^A a_2 = m^A$$

 $p_1^B b_1 + p_2^B b_2 = m^B$

Economics 251 (Professor Jakiela)

Pationality in Dictator Campo Slide 20

Checking WARP

2 bundles:

$$A = (a_1, a_2)$$
 and $B = (b_1, b_2)$

2 sets of prices, budget sizes:

$$p^{A} = (p_{1}^{A}, p_{2}^{A}), p^{B} = (p_{1}^{B}, p_{2}^{B})$$

Bundles on the budget lines:

$$p_1^A a_1 + p_2^A a_2 = m^A$$

 $p_1^B b_1 + p_2^B b_2 = m^B$

Choice violate WARP if:

$$p_1^A b_1 + p_2^A b_2 \le m^A$$

 $p_1^B a_1 + p_2^B a_2 \le m^B$

Economics 251 (Professor Jakiela)

The Generalized Axiom of Reveled Preference

The Generalized Axiom of Reveled Preference (GARP):

If $x = (x_1, x_2)$ is **indirectly** revealed preferred to $y = (y_1, y_2)$ then y cannot also be **directly** revealed **strictly** preferred to x

If choices satisfy GARP, then there is a well-behaved utility function that that could explain those choices (through utility maximization)

Economics 251 (Professor Jakiela)

Rationality in Dictator Games, Slide 3

A Modified Dictator Game

Standard dictator game:

Player 1 receives 10 dollars, chooses an amount $x \in [0, 10]$ to allocate to Player 2

 \rightarrow Can represent game as a budget line:

$$x_{self} + x_{other} = m$$

Economics 251 (Professor Jakiela)

Experimental Subjects

American Life Panel (ALP):

- 687 American adults complete experiment in 2013 and 2016
- Each matched with ALP respondent not sampled for experiment

Yale Law School (YLS):

• Three waves of students (2007, 2010, 2013)

Undergraduates at UC Berkeley (UCB):

• Experimental conducted in the Berkeley XLab in 2004 and 2011

Economics 251 (Professor Jakiela

Rationality in Dictator Games, Slide 3

Testing Rationality

By choosing an allocation on the budget line, the dictator reveals a preference for it

Economics 251 (Professor Jakiela)

Economists say that complete and transitive preferences are **rational**; under rationality, choosing a bundle is demonstrates that it gives you greater utility than the alternatives

Economics 251 (Professor Jakiela

Rationality in Dictator Games, Slide 3

Testing Rationality

Economists say that complete and transitive preferences are **rational**; under rationality, choosing a bundle is demonstrates that it gives you greater utility than the alternatives

A allocation $x = (x_{self}, x_{other})$ is **indirectly revealed preferred** to $y = (y_{self}, y_{other})$ whenever there is some sequence of allocations chosen so that: $x \succ w^1 \succ w^2 \succ ... \succ w^n \succ y$

Testing Rationality

Economists say that complete and transitive preferences are **rational**; under rationality, choosing a bundle is demonstrates that it gives you greater utility than the alternatives

A allocation $x = (x_{self}, x_{other})$ is **indirectly revealed preferred** to $y = (y_{self}, y_{other})$ whenever there is some sequence of allocations chosen so that: $x \succ w^1 \succ w^2 \succ \ldots \succ w^n \succ y$

If preferences are rational, this implies:

$$u(x_{self}, y_{other}) \ge u(a_{self}^1, a_{other}^1) \ge \ldots \ge u(a_{self}^n, a_{other}^n) \ge u(y_{self}, y_{other})$$

Economics 251 (Professor Jakiela

Rationality in Dictator Games, Slide 3

Testing Rationality

Economists say that complete and transitive preferences are **rational**; under rationality, choosing a bundle is demonstrates that it gives you greater utility than the alternatives

A allocation $x = (x_{self}, x_{other})$ is **indirectly revealed preferred** to $y = (y_{self}, y_{other})$ whenever there is some sequence of allocations chosen so that: $x \succ w^1 \succ w^2 \succ \ldots \succ w^n \succ y$

If preferences are rational, this implies:

$$u(x_{self}, y_{other}) \ge u(a_{self}^1, a_{other}^1) \ge \ldots \ge u(a_{self}^n, a_{other}^n) \ge u(y_{self}, y_{other})$$

A dictator's preferences over payoffs satisfy GARP if the following is true: if an allocation x is indirectly revealed preferred to y, then y is **not** directly revealed strictly preferred to x

Economics 251 (Professor Jakiela)

Testing Rationality

Economists say that complete and transitive preferences are **rational**; under rationality, choosing a bundle is demonstrates that it gives you greater utility than the alternatives

A allocation $x = (x_{self}, x_{other})$ is **indirectly revealed preferred** to $y = (y_{self}, y_{other})$ whenever there is some sequence of allocations chosen so that: $x \succ w^1 \succ w^2 \succ \ldots \succ w^n \succ y$

If preferences are rational, this implies:

$$u(x_{self}, y_{other}) \ge u(a_{self}^1, a_{other}^1) \ge \ldots \ge u(a_{self}^n, a_{other}^n) \ge u(y_{self}, y_{other})$$

A dictator's preferences over payoffs satisfy GARP if the following is true: if an allocation x is indirectly revealed preferred to y, then y is **not** directly revealed strictly preferred to x

Afriat's Theorem: GARP \Leftrightarrow there is a well-behaved utility function that rationalizes the data

Economics 251 (Professor Jakiela

Rationality in Dictator Games, Slide 3

Testing Rationality

Experimental design also allows us to measure economic rationality

- Almost all subjects violate GARP (more so than students)
- Subjects' choices demonstrate a high degree of consistency

Economics 251 (Professor Jakiela)

The CES Utility Function

Estimate CES other-regarding utility function at the subject level:

$$u_s(x_{self}, x_{other}) = [\alpha(x_{self})^{\rho} + (1 - \alpha)(x_{other})^{\rho}]/\rho$$

Generates individual CES parameter estimates for every subject *n*:

- $\hat{\alpha}_n$: fair-mindedness/selfishness, weight on payoff to *self* vs. *other*
- $\hat{\rho}_n$: curvature of altruistic indifference curves, measures willingness to trade off equality and efficiency (aggregate payoff)

CES utility function spans a range of preference types

- ullet Approaches perfect substitutes indifference curves as ho o 1
- Approaches perfect complements indifference curves as $ho \to -\infty$

Economics 251 (Professor Jakiela)

Rationality in Dictator Games, Slide 4

Estimating Individual CES Parameters

CES expenditure function is given by:

$$\frac{x_s}{m} = \frac{\left(\frac{\alpha}{1-\alpha}\right)^{1/(1-\rho)}}{\left(p_o\right)^{\rho/(\rho-1)} + \left(\frac{\alpha}{1-\alpha}\right)^{1/(1-\rho)}}$$

Individual-level econometric specification for each subject *n*:

$$\frac{x_{s,n,i}}{m_i} = \frac{\left(\frac{\alpha_n}{1-\alpha_n}\right)^{1/(1-\rho_n)}}{\left(\rho_{o,n,i}\right)^{\rho_n/(\rho_n-1)} + \left(\frac{\alpha_n}{1-\alpha_n}\right)^{1/(1-\rho_n)}} + \epsilon_{n,i}$$

where i=1,...,50 and $\epsilon_{n,i}$ is iid normal with mean zero and variance σ_n^2

Economics 251 (Professor Jakiela)

Classifying Distributional Preference Types

Fair-mindedness vs. selfishness:

- We classify a subject as **fair-minded** if 0.45 $< \hat{\alpha}_n <$ 0.55
- We classify a subject as **selfish** if $\hat{\alpha}_n > 0.95$

Equality-efficiency tradeoffs:

- We classify a subject as **efficiency-focused** if $\hat{\rho}_n > 0$
- We classify a subject as **equality-focused** if $\hat{\rho}_n < 0$

Economics 251 (Professor Jakiela

Rationality in Dictator Games, Slide 43

Classifying Distributional Preference Types

Table 3. Ordered logit estimation of YLS subjects' career choices. Standard errors in parentheses.

***, significance at the 99% level; **, significance at the 95% level; *, significance at the 90% level. Dependent variable is equal to 1 for subjects who work in the nonprofit sector, equal to 2 for subjects who work in academia or government, and equal to 3 for subjects who work in the corporate sector. Controls are for age, gender, and year of experimental session.

Dependent variable: post-YLS career category

	Without controls	
Above median β _n	1.043***	
	(0.364)	
Decile of estimated ρ̂ _n		0.157**
		(0.068)
Observations	120	120
	With controls	
Above median ô	1.035***	
	(0.374)	
Decile of estimated ρ̂ _n		0.164**
		(0.076)
Observations	118	118

Economics 251 (Professor Jakiela)

