## 6 Labor Supply

### 6.1 Labor-Leisure Tradeoffs

- A decision-maker is endowed with $L>0$ hours
- They divide their time between hours of work, $h \geq 0$, and hours of leisure, $\ell \geq 0$
- Thus, hours worked are hours not spent on leisure:

$$
\begin{equation*}
h=L-\ell \tag{1}
\end{equation*}
$$

- For every hour worked, the decision-maker earns wage $w$; so income if $w h=w(L-\ell)$
- Wages are spent on a single consumption good, and the price of a unit of the consumption good is normalized to $p=1$
- We can write the budget constraint as

$$
\begin{equation*}
c \leq w(L-\ell) \Leftrightarrow c+w \ell \leq w L \tag{2}
\end{equation*}
$$

- Individual utility depends on consumption, $c$, and leisure, $\ell$
- Preferences can be represented by the utility function $u(c, \ell)$
- We can represent the decision-maker's budget set graphically:

- The scarce resource that the decision-maker is allocating is time, and a change in the wage affects both the value of the decision-maker's endowment $(w L)$ and the opportunity cost of an hour of leisure (measured in foregone consumption)


### 6.2 Labor Supply and the Demand for Leisure

- Though the setup is different, we can solve the decision-maker's problem using our standard approach, writing down a Lagrangian and then differentiating with respect to $c, \ell$, an $\lambda$
- The Lagrangian:

$$
\begin{equation*}
\mathcal{L}=u(c, \ell)+\lambda(w L-c-w \ell) \tag{3}
\end{equation*}
$$

- The resulting first-order conditions:

1. $\frac{\partial \mathcal{L}}{\partial c}=0 \Leftrightarrow \frac{\partial u(c, \ell)}{\partial c}=\lambda$
2. $\frac{\partial \mathcal{L}}{\partial \ell}=0 \Leftrightarrow \frac{\partial u(c, \ell)}{\partial \ell}=\lambda w \Leftrightarrow \frac{1}{w} \cdot \frac{\partial u(c, \ell)}{\partial \ell}=\lambda$
3. $\frac{\partial \mathcal{L}}{\partial \lambda}=0 \Leftrightarrow c+w \ell=w L$

- We can solve this system of equations for $\ell$ to find demand for leisure, $\ell^{*}(w, L)$; or for $c$ to find demand for the consumption good, $c^{*}(w, L)$
- We can also solve for labor supply: $h^{*}(w, L)=L-\ell^{*}(w, L)$
- Example: $u(c, \ell)=\sqrt{c}+\sqrt{\ell}$
- The Lagrangian:

$$
\begin{equation*}
\mathcal{L}=\sqrt{c}+\sqrt{\ell}+\lambda(w L-c-w \ell) \tag{4}
\end{equation*}
$$

- The resulting first-order conditions:

1. $\frac{\partial \mathcal{L}}{\partial c}=0 \Leftrightarrow \frac{1}{2 \sqrt{c}}=\lambda$
2. $\frac{\partial \mathcal{L}}{\partial \ell}=0 \Leftrightarrow \frac{1}{2 \sqrt{\ell}}=\lambda w \Leftrightarrow \frac{1}{2 w \sqrt{\ell}}=\lambda$
3. $\frac{\partial \mathcal{L}}{\partial \lambda}=0 \Leftrightarrow c+w \ell=w L$

- Combining FOC 1 and FOC 2 :

$$
\begin{aligned}
\frac{1}{2 \sqrt{c}} & =\frac{1}{2 w \sqrt{\ell}} \\
\Leftrightarrow \sqrt{c} & =w \sqrt{\ell} \\
\Leftrightarrow c & =w^{2} \ell
\end{aligned}
$$

- Plugging this into FOC 3:

$$
\begin{aligned}
c+w \ell & =w L \\
\Leftrightarrow w^{2} \ell+w \ell & =w L \\
\Leftrightarrow \ell^{*}(w, L) & =\frac{L}{1+w}
\end{aligned}
$$

- Having solved for demand for the leisure, $\ell^{*}(w, L)$, we can easily solve for labor supply and the demand for consumption:

$$
\begin{aligned}
h^{*}(w, L) & =L-\ell^{*}(w, L) \\
& =L-\frac{L}{1+w} \\
& =\frac{L+w L}{1+w}-\frac{L}{1+w} \\
& =\frac{w L}{1+w}
\end{aligned}
$$

and

$$
\begin{aligned}
c^{*}(w, L) & =w^{2} \ell^{*}(w, L) \\
& =\frac{w^{2} L}{1+w}
\end{aligned}
$$

- Practice Problem: find the demand for leisure, the demand for consumption, and labor supply if utility is $u(c, \ell)=\frac{-1}{c}+\frac{-1}{\ell}$
- In the examples above, does the demand for leisure increase or decrease as $w$ increases?


### 6.3 Price Changes and Wealth Effects

- Consider the example above. Suppose $L=60$. What happens when the wage increases from $w^{0}=1$ to $w^{1}=2$ ?

- When $L=60$ and $w^{0}=1$, the decision-maker chooses the bundle $(30,30)-30$ hours of leisure (and implicitly 30 hours of work) and 30 units of consumption
- When the wages rises to $w^{1}=2$, the decision-maker chooses $(20,80)-20$ hours of leisure and 80 units of consumption
- Thus, the opportunity cost of leisure increases, and the demand for leisure decreases
- Now consider what would happen after a compensated price change - a shift to the new price ratio, but with a budget line that ran through the original chosen consumption bundle $(30,30)$

- As you can see in the figure above, a compensated price change (from $w^{0}=1$ to $w^{1}=2$ ) would require a decrease in $L$, the endowment of hours, from 60 to 40
- After a compensated price change to $w^{1}=2$ and $L^{c}=45$, the decision-maker would choose the bundle $(15,60)$ (confirm this for yourself)
- Thus, as expected, an increase in the opportunity cost of leisure leads to a substitution away from leisure after a compensated price change (again, the substitution effect is non-positive)
- What is more surprising is that the actual price - an increase in the implicit price of leisure - change involves shifting the budget line out from the compensated price change; we would normal expect an increase in the price of one of the goods to be equivalent to shifting the budget line in instead of out
- In this case, the value of the endowment also depends on $w$, so an increase in the wage raises the opportunity cost of leisure and the overall value of the decision-maker's endowment
- This gives rise to a wealth effect, a change in demand that results from a change in the value of an individual's assets
- Intuitively, because $w$ impacts both the opportunity cost of choosing $\ell$ hours of leisure and the overall value of the endowment, the change in $w$ is mathematically equivalent to a change in the price of the consumption good
- Because of wealth effects, we will sometimes see demand for leisure increase after an increase in $w$, even when leisure is not a Giffen good
- You can see this will be true when utility is $u(c, \ell)=\frac{-1}{c}+\frac{-1}{\ell}$ :
- Consider a price rise from $w^{0}=1$ to $w^{1}=4$ (so that the math works out nicely)
- You should be able to show that the substitution effect is negative, but the overall change in demand for leisure is positive - because the increase in the value of the endowment has made the decision-maker wealthier


### 6.4 Government Policy and Labor Supply

- Government policies impact the shape of the budget set over consumption and leisure:
- Social protection (i.e. transfer) programs
- Income taxes
- Laws about overtime pay
- Restrictions on hours
- Employers also place restrictions on the budget set, for example by requiring people to work a minimum number of hours per week


### 6.4.1 Government Transfers and Non-Labor Income

- Consider a simply extension to the model described above: individuals receive transfer income $\tau>0$ from the government, in addition to their labor income
- If an individual works zero hours, they can consume up to $\tau$ units of the consumption good
- If they work $L$ hours, their total income is $w L+\tau$
- The point of tangency between the budget line and an indifference curve may occur at $\ell>L$, which is impossible because the decision-maker cannot consume more than $L$ hours of leisure; this would occur if the decision-maker preferred more than $L$ hours of leisure and less than $\tau$ units of consumption over all available consumption bundles
- In this case, the highest attainable level of utility will occur at $\ell=L$ : the decisionmaker will choose not to work at all, and will fund consumption with transfer income


### 6.4.2 Income Taxes

- Graduated income taxes can also create kinked budget lines
- If the tax rate is $t_{\text {low }}$ for low levels of income and $t_{\text {high }}>t_{\text {low }}$ for higher levels of income, the slope of the budget line will be flatter for relatively low levels of leisure

