
5 Utility Maximization

5.1 The Decision-Maker’s Problem

◦ When a decision-maker wants to choose a consumption bundle in Rk
+, we can express

their problem as:

maxu (x1, x2, . . . , xk) subject to
k∑
i=1

pixi ≤ m (1)

In other word’s the decision-maker’s problem is to maximize their utility subject to

their budget constraint

◦ When an individual has monotone preferences, we know that they can increase their

utility by consuming more of one or both goods; this means that a decision-maker

will always use their entire budget, and the budget constraint will bind

◦ In the two-good case, if we want to solve for the optimal (i.e. chosen or demanded) lev-

els of x1 and x2 that a decision-maker will consume, we’ll need at least one additional

equation to pin down our two unknowns

◦ Example: Perfect Complements Utility

– Perfect complements: u(x1, x2) = min {x1, x2}

– Draw the indifference curves and a budget line

– There are infinitely many indifference curves that cross the budget line twice,

exactly one indifference curve that touches the budget line once, and infinitely

many indifference curves that never intersect the budget line

– The optimal bundle is where x1 = x2 and the decision-maker uses her entire

budget

– This gives us two equations and two unknowns, so we can solve for the optimal

x∗1 as a function of p1, p2, and m, but not x2

– Combining these two equations gives us:

p1x1 + p2x2 = m⇔ p1x1 + p2x1 = m

⇔ x∗1 (p1, p2,m) =
m

p1 + p2

(2)
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◦ Example: Cobb-Douglas Utility

– Perfect complements: u(x1, x2) = ln x1 + lnx2

– Draw the indifference curves and a budget line

– Cobb-Douglas indifference curves never intersect the budget line – why?

– The optimal bundle is at the point of tangency between the budget line and the

indifference curve, i.e. where they have the same slope:

− p1
p2

= −x2
x1
⇔ p1x1 = p2x2 (3)

because the slope of the budget line is −p1/p2 and the slope of the indifference

curve is −1 times the marginal rate of substitution (MRS)

– We can solve for the optimal bundle by using the tangency equation as our

second equation, which we can then substitute into the budget constraint:

p1x1 + p2x2 = m⇔ p1x1 + p1x1 = m

⇔ x∗1 (p1, p2,m) =
m

2p1

(4)

◦ We’ve now seen two different ways to solve the utility maximization problem:

1. Stare at a graph of the indifference curves until insight strikes

2. Use the tangency condition and the budget constraint as our two equations,

which we can solve for our two unknowns x∗1 (p1, p2,m) and x∗2 (p1, p2,m)

◦ These approaches work in different situations: notice that in the perfect complements

example, the indifference curve is not tangent to the budget line at the chosen bundle

(or anywhere, in fact)

◦ With our Cobb-Douglas example, there are two other approaches we might have used

to arrive at the same answer

◦ Example: Cobb-Douglas Utility revisited, substitution approach

– Since we know the budget constraint is binding, we also know that

p1x1 + p2x2 = m⇔ x2 =
m− p1x1

p2
(5)
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– We can substitute this into the utility function, so that utility becomes a function

of only one choice variable (since whatever money one doesn’t spend on Good 1

is spent on good 2):

u(x1, x2) = lnx1 + lnx2

= lnx1 + ln

(
m− p1x1

p2

)
= lnx1 + ln (m− p1x1)− ln p2

= u(x1)

(6)

– Now that we have transformed utility into a function of one variable, we can

find it’s critical values by taking the derivative with respect to x1 and setting it

equal to 0:

du(x1, x2)

dlx1
= 0⇔ 1

x1
− −p1
m− p1x1

= 0

⇔ 1

x1
− −p1
m− p1x1

⇔ m− p1x1 = p1x1

⇔ x∗1 (p1, p2,m) =
m

2p1

(7)

– So, we’ve again arrived at our expression for demand for Good 1

◦ A final approach to solving the decision-maker’s utility maximization problem (or

any constrained optimization problem) is to use a Lagrangian, and approach which

is described in Carl Simon and Lawrence Blume’s Mathematics for Economists as

“truly magical”

– For any constrained optimization problem where we wish to maximize a function

f(x1, x2, . . . , xk) subject to the constraint g(x1, x2, . . . , xk) = 0, we can write the

Lagrangian:

L = f(x1, x2, . . . , xk) + λ [g(x1, x2, . . . , xk)] (8)

where λ ∈ R is the Lagrange multiplier

– Instead of finding the derivatives of f(x1, x2, . . . , xk) with respect to x1, x2, etc.,

we find the derivatives of L with respect to x1, x2, etc. as well as λ
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– Setting all of those derivatives equal to zero and solving the system of equations

gives us the solution to our constrained optimization problem

– In the case of a utility maximization problem with two goods and a standard

budget constraint p1x1 + p2x2 = m, the Lagrangian is:

L = u(x1, x2) + λ (m− p1x1 − p2x2) (9)

– We then find three derivatives – ∂L/partialx1, ∂L/partialx2, and ∂L/partialλ

– Setting these three derivatives equal to zero and solving will give us the demand

functions that solve the utility maximization problem

◦ Example: Cobb-Douglas Utility revisited again, Lagrangian approach

– An individual wishes to maximized u(x1, x2) = ln x1+lnx2 subject to the budget

constraint p1x1 + p2x2 = m

– We can write the Lagrangian:

L = lnx1 + lnx2 + λ (m− p1x1 − p2x2) (10)

– Our three first-order conditions are:

(1) ∂L
∂x1

= 0⇔ 1
x1
− λp1 = 0

(2) ∂L
∂x2

= 0⇔ 1
x2
− λp2 = 0

(3) ∂L
∂λ

= 0⇔ m− p1x1 − p2x2 = 0

– Solving (1) and (2) for λ and setting the resulting expressions equal to each

other yields:

1

p1x1
=

1

p2x2

⇔ p1x1 = p2x2

(11)

– Notice that this is the same result we got from the tangency condition in our

first approach to solving the utility maximization problem given a Cobb-Douglas

utility function
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– Substituting this into our budget constraint allows us to solve for the demand

function (again)

◦ We’ve now seen four approaches to solving the utility maximization problem:

1. Stare at a graph of the indifference curves until insight strikes

2. Use the tangency condition and the budget constraint as our two equations,

which we can solve for our two unknowns x∗1 (p1, p2,m) and x∗2 (p1, p2,m)

3. Solve the budget constraint for x2 expressed in terms of x1, substitute into the

utility function, and find the value of x∗1 (p1, p2,m) that maximizes utility

4. Represent the constrained utility maximization problem as the problem of max-

imizing a(n unconstrained) Lagrangian function

◦ Approach 1 is usually needed when the utility function is not differentiable, or when

preferences are not monotone or strictly convex, or if the budget set is not convex

– Example. What would the demand function look when goods are perfect sub-

stitutes, so indifference curves are straight lines? How would the decision-maker

maximize utility when the budget line is steeper than the indifference curve?

What about when the budget line is flatter than the indifference curve?

◦ The other three approaches work best when the utility function is differentiable,

preferences are strongly monotone and strictly convex, and the budget set is convex

◦ Using a Lagrangian is particularly helpful as the number of goods starts to increase,

particularly if the problem is fairly regular, as the example below illustrates

– Example. Consider a retiree who is deciding how to allocate their retirement

savings across the 30 additional years that they expect to live, t = 1, 2, . . . , 30.

If they consume ct in period t, their utility in that period is u(ct) =
√
ct. Their

total utility is the sum of utility across all periods: U(c1, c2, . . . , c30) =
∑30

t=1

√
ct.

The retiree wishes to maximize total utility subject to the budget constraint that

they cannot consume more than their total retirement savings:
∑30

t=1 ct = m.
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5.2 Corner Solutions

◦ In both our Perfect Complements and Cobb-Douglas examples, the decision-maker

always chooses to consume positive quantities of both goods – regardless of the price

of the goods or the size of the budget

◦ An interior solution occurs when a decision-maker consumes a positive amount of

all the goods; a corner solution occurs when a decision-maker sets consumption of

at least one good to zero

◦ Example: Quasilinear Utility

– Consider the utility function:

u(x1, x2) = ln x1 + x2 (12)

– This is a quasilinear utility function where Good 2 is a numeraire good

that enters into utility linearly

◦ Any utility function of the form

u(x1, x2) = f(x1) + x2 (13)

is quasilinear, though it is usually the case tat f(·) is some concave function

– Suppose a decision-maker wishes to maximize u(x1, x2) subject to the budget

constraint p1x1 + p2x2 = m

– This problem turns out to be very easy to solve if we substitute x2 out of the

utility function:

u(x1, x2) = ln x1 + x2

= lnx1 +
m− p1x1

p2

= lnx1 +
m

p2
− p1
p2
x1

= u(x1)

(14)
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– Take the derivative with respect to x1 and set it equal to zero:

du(x1)

dx1
= 0⇔ 1

x1
− p1
p2

= 0

⇔ x1 =
p2
p1

(15)

– Notice that the optimal quantity of Good 1 that the decision-maker wishes to

consume does not depend on the size of the budget, m, or on the amount of

Good 2 that they consume

– At this point, we might think that we’ve solved the decision-maker’s utility

maximization problem: we’ve expressed demand for Good 1 as a function of

prices that does not depend on x2, and we know that whatever money is not

spent on Good 1 will be spent on Good 2

– Unfortunately, there’s a problem: to see this, consider what happens when p1 =

1, p2 = 10, and m = 6

◦ The optimal quantity of Good 1 is:

x1 =
p2
p1

=
10

1

= 10

(16)

◦ If the decision-maker spends the rest of her budget on Good 2, her demand

for Good 2 is:

x2 =
m− p1x1

p2

=
6− 1 · 10

10

= − 4

10

= −0.4

(17)

◦ But demand for Good 2 can’t be negative!

– What’s happened here is that the point of tangency between the budget line and

the indifference curve occurs when the quantity of Good 2 consumed in negative
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◦ The slope of the is −1/10

◦ The MRS is 1/x1, so an indifference curve can only be tangent to the budget

line if x1 = 10

◦ Given a budget size of m = 6, if the price of Good 1 is 1, the MRS is

1/6 when x2 = 0 – so even if the decision-maker spends her entire budget

on Good 1, she can’t get to the point where her marginal willingness to

substitute matches the price ratio (because Good 2 is very expensive)

– When the optimal interior solution involves a negative quantity of one of the

two goods – which is impossible – the best the decision-maker can do is to spend

all of their money on the other good

– In this case, the consumer wants to spend all of their money on Good 1 unless

they can afford to consume at least p2/p1 units of Good 1

– With (this) quasilinear utility function, demand for Good 1 takes the following

form:

x∗1 (p1, p2,m) =

m
p1

if p2 > m

p2
p1

if p2 ≤ m
(18)

– With quasilinear utility, demand will always take this general form: there will

be a range of prices and budget sizes where the consumer spends all of their

money on the good that is not the numeraire, and a range of prices and budget

sizes where the consumer demands their optimal quantity of the non-numeraire

good and spends the rest of their money on the numeraire good

Practice Problems

Find demand for Good 1 for each of the following utility functions:

1. Perfect complements: u(x1, x2) = min {ax1, bx2} for a > 0 and b > 0

2. Perfect substitutes: u(x1, x2) = ax1 + bx2 for a > 0 and b > 0

3. Cobb-Douglas: u(x1, x2) = a lnx1 + b lnx2 for a > 0 and b > 0

4. Square root utility: u(x1, x2) =
√
x1 +

√
x2
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5. u(x1, x2) = −1
x1

+ −1
x2

6. Constant elasticity of substitution (CES) utility: u(x1, x2) =
xδ1
δ

+
xδ2
δ

7. Quasilinear utility 1: u(x1, x2) = a lnx1 + bx2 for a > 0 and b > 0

8. Quasilinear utility 2: u(x1, x2) = a
√
x1 + bx2 for a > 0 and b > 0

9. Optimal bundle utility: u(x1, x2) = −
√

(x1 − a)2 + (x2 − b)2 for a > 0 and b > 0

10. Stone-Geary utility: u(x1, x2) = a ln(x1 − c) + b ln(x2 − d) for a > 0, b > 0, c > 0,

and d > 0

11. What would happen if you extended each of the utility functions above to allow for

3 goods? What about k goods?

9


	Utility Maximization
	The Decision-Maker's Problem
	Corner Solutions


